t (days)	$W(t)$ $\left({ }^{\circ} \mathrm{C}\right)$
0	20
3	31
6	28
9	24
12	22
15	21

2. The temperature, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15-day period.
(a) Use data from the table to find an approximation for $W^{\prime}(12)$. Show the computations that lead to your answer. Indicate units of measure.
(b) Approximate the average temperature, in degrees Celsius, of the water over the time interval $0 \leq t \leq 15$ days by using a trapezoidal approximation with subintervals of length $\Delta t=3$ days.
(c) A student proposes the function P, given by $P(t)=20+10 t e^{(-t / 3)}$, as a model for the temperature of the water in the pond at time t, where t is measured in days and $P(t)$ is measured in degrees Celsius. Find $P^{\prime}(12)$. Using appropriate units, explain the meaning of your answer in terms of water temperature.
(d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of $P(t)$ over the time interval $0 \leq t \leq 15$ days.

2001 AB 6 no calculator
6. The function f is differentiable for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of $y=f(x)$, and the slope at each point (x, y) on the graph is given by $\frac{d y}{d x}=y^{2}(6-2 x)$.
(a) Find $\frac{d^{2} y}{d x^{2}}$ and evaluate it at the point $\left(3, \frac{1}{4}\right)$.
(b) Find $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=y^{2}(6-2 x)$ with the initial condition $f(3)=\frac{1}{4}$.
(a) Difference quotient; e.g.

$$
W^{\prime}(12) \approx \frac{W(15)-W(12)}{15-12}=-\frac{1}{3}{ }^{\circ} \mathrm{C} / \text { day or }
$$

$W^{\prime}(12) \approx \frac{W(12)-W(9)}{12-9}=-\frac{2}{3}{ }^{\circ} \mathrm{C} /$ day or
$W^{\prime}(12) \approx \frac{W(15)-W(9)}{15-9}=-\frac{1}{2}{ }^{\circ} \mathrm{C} /$ day
(b) $\frac{3}{2}(20+2(31)+2(28)+2(24)+2(22)+21)=376.5$

Average temperature $\approx \frac{1}{15}(376.5)=25.1^{\circ} \mathrm{C}$
(c) $P^{\prime}(12)=10 e^{-t / 3}-\left.\frac{10}{3} t e^{-t / 3}\right|_{t=12}$

$$
=-30 e^{-4}=-0.549^{\circ} \mathrm{C} / \text { day }
$$

This means that the temperature is decreasing at the rate of $0.549^{\circ} \mathrm{C} /$ day when $t=12$ days.
(d) $\frac{1}{15} \int_{0}^{15}\left(20+10 t e^{-t / 3}\right) d t=25.757^{\circ} \mathrm{C}$
$2:\left\{\begin{array}{l}1: \text { difference quotient } \\ 1: \text { answer (with units) }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { trapezoidal method } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: P^{\prime}(12) \text { (with or without units) } \\ 1: \text { interpretation }\end{array}\right.$

3 :
1 : integrand
1 : limits and average value constant
answer

Notes: the third method shown for Part A makes the most sense in that it is the most repeatable. Imagine, for instance, if they had asked for estimating $W^{\prime}(13) \ldots$ you would use the points given on either side of it.

Part C should be done using "Math- 8 " in the calculator.

$$
\text { (a) } \begin{aligned}
\frac{d^{2} y}{d x^{2}} & =2 y \frac{d y}{d x}(6-2 x)-2 y^{2} \\
& =2 y^{3}(6-2 x)^{2}-2 y^{2}
\end{aligned} \quad \begin{aligned}
& \left.\frac{d^{2} y}{d x^{2}}\right|_{\left(3, \frac{1}{4}\right)}=0-2\left(\frac{1}{4}\right)^{2}=-\frac{1}{8}
\end{aligned}
$$

(b) $\frac{1}{y^{2}} d y=(6-2 x) d x$

$$
\begin{aligned}
& -\frac{1}{y}=6 x-x^{2}+C \\
& -4=18-9+C=9+C \\
& C=-13 \\
& y=\frac{1}{x^{2}-6 x+13}
\end{aligned}
$$

