Using Geometry for Definite Integrals

Graph the integrands and use geometry to evaluate the definite integrals.

911.
$$\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx$$

914.
$$\int_{-1}^{1} (2 - |x|) dx$$

912.
$$\int_{-3}^{3} \sqrt{9 - x^2} \ dx$$

915.
$$\int_0^b x \ dx \text{ where } b > 0$$

913.
$$\int_{-2}^{1} |x| \ dx$$

916.
$$\int_{a}^{b} 2x \ dx$$
 where $0 < a < b$

917. Suppose f and g are continuous and that

$$\int_{1}^{2} f(x) \ dx = -4, \qquad \int_{1}^{5} f(x) \ dx = 6, \qquad \int_{1}^{5} g(x) \ dx = 8.$$

Evaluate the following definite integrals.

a)
$$\int_{2}^{2} g(x) dx$$

c)
$$\int_{1}^{2} 3f(x) \ dx$$

e)
$$\int_{1}^{5} [f(x) - g(x)] dx$$

b)
$$\int_{5}^{1} g(x) \ dx$$

d)
$$\int_{2}^{5} f(x) dx$$

f)
$$\int_{1}^{5} [4f(x) - g(x)] dx$$

918. Suppose that $\int_{-2}^{0} g(t) dt = \sqrt{2}$. Find the following.

a)
$$\int_{0}^{-3} g(t) dt$$

b)
$$\int_{-3}^{0} g(u) \ du$$

a)
$$\int_{0}^{-3} g(t) dt$$
 b) $\int_{-3}^{0} g(u) du$ c) $\int_{-3}^{0} -g(x) dx$ d) $\int_{-3}^{0} \frac{g(\theta)}{\sqrt{2}} d\theta$

d)
$$\int_{-3}^{0} \frac{g(\theta)}{\sqrt{2}} d\theta$$

919. A particle moves along the x-axis so that at any time $t \geq 0$ its acceleration is given by a(t) = 18 - 2t. At time t = 1 the velocity of the particle is 36 meters per second and its position is x = 21.

- a) Find the velocity function and the position function for $t \geq 0$.
- b) What is the position of the particle when it is farthest to the right?