Volumes of Solids with Known Cross Sections CW/HW

- 1. A solid S is built in such a way that its base is bounded by a circle of radius 3 meters and center at the origin. If each plane section perpendicular to a given diameter of the base is a square, find the volume of solid S.
- 2. Find the volume of a solid S if its base is bounded by the ellipse $x^2 + 4y^2 = 4$ and the cross sections perpendicular to the x- axis are squares.
- 3. Find the volume of a solid S if its base is bounded by the circle $x^2 + y^2 = 1$ and the cross sections perpendicular to the x- axis are equilateral triangles.
- 4. Find the volume of a solid S if its base is bounded by the circle $x^2 + y^2 = 4$ and the cross sections perpendicular to the x- axis are semicircles.
- 5. Find the volume of a solid S if its base is bounded by the circle $x^2 + y^2 = 16$ and the cross sections perpendicular to the x- axis are isosceles right triangles having the hypotenuse in the plane of the base.
- 6. Find the volume of a solid S if its base is bounded by the curve $y = 2x^3$, the lines x = 2 and y = 0, and the cross sections perpendicular to the line x = 0 are equilateral triangles.

1. 144 2. 32/3 3. $(4\sqrt{3})/3$ 4. $16\pi/3$ 5. 256/3 6. $(8\sqrt{3})/5$