1. A solid \mathbf{S} is built in such a way that its base is bounded by a circle of radius 3 meters and center at the origin. If each plane section perpendicular to a given diameter of the base is a square, find the volume of solid \mathbf{S}.
2. Find the volume of a solid \mathbf{S} if its base is bounded by the ellipse $x^{2}+4 y^{2}=4$ and the cross sections perpendicular to the x - axis are squares.
3. Find the volume of a solid \mathbf{S} if its base is bounded by the circle $x^{2}+y^{2}=1$ and the cross sections perpendicular to the x-axis are equilateral triangles.
4. Find the volume of a solid \mathbf{S} if its base is bounded by the circle $x^{2}+y^{2}=4$ and the cross sections perpendicular to the x - axis are semicircles.
5. Find the volume of a solid \mathbf{S} if its base is bounded by the circle $x^{2}+y^{2}=16$ and the cross sections perpendicular to the x - axis are isosceles right triangles having the hypotenuse in the plane of the base.
6. Find the volume of a solid \mathbf{S} if its base is bounded by the curve $y=2 x^{3}$, the lines $x=2$ and $y=0$, and the cross sections perpendicular to the line $x=0$ are equilateral triangles.
7. 144
8. $32 / 3$
9. $(4 \sqrt{3}) / 3$
10. $16 \pi / 3$
11. $256 / 3$
12. $(8 \sqrt{3}) / 5$
