\qquad
Winter Break Curve Sketching Packet of Misery
Date \qquad
Find x and y intercepts, x-coordinates of the critical points, open intervals where the function is increasing and decreasing, x-coordinates of the inflection points, open intervals where the function is concave up and concave down, and relative extrema. Then graph. No calculators.

1) $f(x)=(5 x-15)^{\frac{2}{3}}$

2) $y=(6 x-12)^{\frac{1}{3}}$

3) $y=\frac{x^{3}}{3}-\frac{x^{2}}{3}-\frac{8 x}{3}$

Curve Sketching

GUIDELINES FOR SKETCHING A CURVE:

A. Domain.

B. Intercepts: x - and y-intercepts.
C. Symmetry: even $(f(-x)=f(x))$ or odd $(f(-x)=-f(x))$ function or neither, periodic function.
D. Asymptotes: horizontal $\left(\lim _{x \rightarrow \pm \infty} f(x)=L\right)$ and vertical $\left(\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty\right)$ asymptotes.
E. Intervals of Increase or Decrease: Number line method with the critical no's and F^{\prime}
F. Local Maximum and Minimum Values: Use critical numbers and number line method.
G. Concavity and Points of Inflection: Compute $f^{\prime \prime}(x)$ and use the Concavity Test.
H. Sketch the Curve: Using the information in items A-G, draw the graph.

EXAMPLE: Use the guidelines to sketch the curve $f(x)=\frac{x-1}{x+2}$.
Solution:
A. Domain: $(-\infty,-2) \cup(-2, \infty)$

B. Intercepts:

(i) x-intercept $(y=0)$:

$$
\frac{x-1}{x+2}=0 \quad \Longrightarrow \quad x-1=0 \quad \Longrightarrow \quad x=1 \quad \Longrightarrow \quad(1,0)
$$

(ii) y-intercept $(x=0)$:

$$
y=\frac{0-1}{0+2}=-\frac{1}{2} \quad \Longrightarrow \quad\left(0,-\frac{1}{2}\right)
$$

C. Symmetry:
(i) This function is not even, since

$$
f(-1)=\frac{-1-1}{-1+2} \neq \frac{1-1}{1+2}=f(1)
$$

(ii) This function is not odd, since

$$
f(-1)=\frac{-1-1}{-1+2} \neq-\frac{1-1}{1+2}=-f(1)
$$

(iii) This function is not periodic.

D. Asymptotes:

(i) Horizontal asymptote:

Note from Mohyuddin: Can also just
use degree/coefficient shortcut.

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{x-1}{x+2}=\lim _{x \rightarrow \pm \infty} \frac{\frac{x-1}{x}}{\frac{x+2}{x}}
$$

$$
=\lim _{x \rightarrow \pm \infty} \frac{1-\frac{1}{x}}{1+\frac{2}{x}}=1 \quad \Longrightarrow \quad y=1 \text { is the horizontal asymptote }
$$

(ii) Vertical asymptote:

$$
\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}} \frac{x-1}{x+2}=\left[\begin{array}{l}
\text { WORK: } \\
\frac{-2.01-1}{-2.01+2}=\frac{-3.01}{-0.01}=\frac{- \text { "NOT SMALL" }}{- \text { "SMALL" }}=+" B I G "
\end{array}\right]=\infty
$$

Therefore $x=-2$ is the vertical asymptote.
E. Intervals of Increase or Decrease: We have

$$
\begin{aligned}
f^{\prime}(x)=\left(\frac{x-1}{x+2}\right)^{\prime}=\frac{(x-1)^{\prime}(x+2)-(x-1)(x+2)^{\prime}}{(x+2)^{2}} & =\frac{1 \cdot(x+2)-(x-1) \cdot 1}{(x+2)^{2}} \\
& =\frac{x+2-x+1}{(x+2)^{2}}=\frac{3}{(x+2)^{2}}>0
\end{aligned}
$$

It follows that this function increases on $(-\infty,-2)$ and $(-2, \infty)$.
F. Local Maximum and Minimum Values: This function has no critical numbers, therefore it has no local maximum and minimum values.
G. Concavity and Points of Inflection: We have

$$
\begin{gathered}
f^{\prime \prime}(x)=\left(\frac{3}{(x+2)^{2}}\right)^{\prime}=\left(3(x+2)^{-2}\right)^{\prime}=3\left((x+2)^{-2}\right)^{\prime}=-6(x+2)^{-3}=-\frac{6}{(x+2)^{3}} \\
f^{\prime \prime} \longrightarrow+ \\
x \longrightarrow
\end{gathered}
$$

It follows that $f^{\prime \prime}(x)>0$ if $x<-2$ and $f^{\prime \prime}(x)<0$ if $x>-2$, therefore $f(x)$ is

$$
\text { concave upward on }(-\infty,-2) \text { and concave downward on }(-2, \infty)
$$

There are no inflection points, since $x=-2$ is not in the domain.
H. Sketch the Curve: We have

EXAMPLE: Use the guidelines to sketch the curve $f(x)=x e^{-x^{2} / 2}$
Solution:
A. Domain:

B. Intercepts:

(i) x-intercepts:
(ii) y-intercepts:

C. Symmetry:

(i) This function is even (?)
(ii) This function is odd (?)
(iii) This function is periodic (?)

D. Asymptotes:

(i) Horizontal asymptotes:
(ii) Vertical asymptotes:

E. Intervals of Increase or Decrease:

F. Local Maximum and Minimum Values:

G. Concavity and Points of Inflection:

H. Sketch the Curve:

2008 AB 6 (Form B)

Consider the closed curve in the $x y$-plane given by $x^{2}+2 x+y^{4}+4 y=5$.
a. Show that $\frac{d y}{d x}=\frac{-(x+1)}{2\left(y^{3}+1\right)}$.
b. Write an equation for the line tangent to the curve at the point $(-2,1)$.
c. Find the coordinates of the two points on the curve where the line tangent to the curve is vertical.
d. Is it possible for this curve to have a horizontal tangent at points where it intersects the x-axis? Explain your reasoning.

Graph of f
A continuous function f is defined on the closed interval $-4 \leq x \leq 6$. The graph of f consists of a line segment and a curve that is tangent to the x-axis at $x=3$, as shown in the figure above. On the interval $0<x<6$, the function f is twice differentiable, with $f^{\prime \prime}(x)>0$.
(a) Is f differentiable at $x=0$? Use the definition of the derivative with one-sided limits to justify your answer.
(b) For how many values of $a,-4 \leq a<6$, is the average rate of change of f on the interval $[a, 6]$ equal to 0 ? Give a reason for your answer.
(c) Is there a value of $a,-4 \leq a<6$, for which the Mean Value Theorem, applied to the interval [a, 6], guarantees a value $c, a<c<6$, at which $f^{\prime}(c)=\frac{1}{3}$? Justify your answer.
(d) The function g is defined by $g(x)=\int_{0}^{x} f(t) d t$ for $-4 \leq x \leq 6$. On what intervals contained in $[-4,6]$ is the graph of g concave up? Explain your reasoning.

