

The basic premise of integrating to find volume: Sum of disk volumes

Sum of disk area * dx (depth)

Basically just:

$$\int_{a}^{6} \overline{\pi(r)}^{2} dx$$

But isn't a disk (cylinder) just a circular prism? $\int_{\lambda}^{h} T(\chi)^{2} d\chi$

So to find volume, we integrate

Where A(x) is the AREA of the face of a cross section (slice)

But what do shapes with non-cylindrical cross sections look like?

- Two key things to remember:
- (1) no revolution/spinning involved
- (2) the graph is flat BASE of the solid

My first volume by cross sections

The region R is bound by y=x, y=1, and x=4.

A solid with R as its base is formed where cross sections perpendicular to the x-axis are squares. Find the volume of such a solid.

Volume of such a solid.
$$V = \int_{a}^{b} A(x) dx = \int_{a}^{b} (\sqrt{x} - 1) dx$$

$$fale Areh = \int_{a}^{b} A(x) dx = \int_{a}^{b} (\sqrt{x} - 1) dx$$

Homework:

- Finish review packet: turn in tomorrow if you will be gone Fri
- Pick up worksheet from me if gone Friday
- Must attend DS tomorrow

99