D-CD8
Practice Assessment

1. If c is the value that satisfies the conclusion of the Mean Value Theorem for $f(x)=x^{3}-2 x^{2}$ on the interval $[0,2]$, then what is the value of c ?
2. Explain why the function $\mathrm{g}(\mathrm{x})$ does not have a tangent line parallel to the secant line over [2,4]. Include a sketch of the secant line.

Curve Sketching: Consider the function $f(x)=\frac{x-1}{x^{2}}$.
Use of a calculator only for CHECKING answer; all calculations/analysis must be shown.
Required questions:
3. What is the domain?
4. What are the coordinates of the x-intercept (if any)? Of the y-intercept?
5. Find the location of any vertical asymptotes by using limits.
6. Find the location of any horizontal asymptotes by using limits.
$f(x)=\frac{x-1}{x^{2}}$
D-AD9
D-AD8
7. Find intervals of increase and decrease and classify local extrema. Find the (x, y) coordinates of any extrema.

D-AD12
D-AD11
8. Find the intervals where the function is concave up, concave down, and the (x, y) coordinates of any inflection points.

D-AD13
9. Over what intervals is:
a. fincreasing concave up?
b. f decreasing concave up?
c. fincreasing concave down?
d. f decreasing concave down?
10. Graph the function using the points/analysis you found:

