

Intervals of increase and decrease



fincreasing: (-00, a) and (c, bo)
fincreasing (a, c)

fixed by (a, c)







Definition:

c is a critical number of f(x) if f'(c) = 0 OR if f'(c) is undefined

All relative extremes occur at critical numbers BUT not all critical numbers yield relative extremes





Where does F have a relative maximum?



A a only

B b only

C c only

D d only

E a and c

F a and b

Answer:

В

Where does F have critical numbers?



A a only

B b only

C c only

D d only

E a and c

F b and d

Answer: F

Where does F have a critical number but NOT a relative extrema?



A a only

B b only

C c only

D d only

Answer B

## Where does F have a relative minimum?



A a only

B b only

C c only

D d only

E a and c

F a and b

**Answer** 

B (f' goes from negative to positive)

## Which is true about F?



A always increasing

B always decreasing

C increases, then decreases

D decreases, then increases

Answer

Α

since f' is always positive, f is always increasing

Where does F have a relative maximum?



A a only

B b only

C c only

D d only

E e only

F both a and d

**Answer** 

D

f' changes from positive to negative

## Where does F have a relative minimum?



Answer: none of the above -\_sorry forgot to make that a choice

A and E are critical numbers, but no sign change C represents a relative maximum (pos to neg)

## Which is NOT a critical number of F?



A a only B b only

C c only

D d only

E e only

Answer D



- 79. The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?
  - (A) f only
  - (B) g only
  - (C) h only
  - (D) f and g only
  - (E) f, g, and h

**Answer** 

Α



- 12. The graph of f', the derivative of f, is shown in the figure above. Which of the following describes all relative extrema of f on the open interval (a,b)?
  - (A) One relative maximum and two relative minima
  - (B) Two relative maxima and one relative minimum
  - (C) Three relative maxima and one relative minimum
  - (D) One relative maximum and three relative minima
  - (E) Three relative maxima and two relative minima

Find all critical numbers of the function

$$f(x) = 4x / (x^2 + 1)$$

$$f(x) = f'(x) = \frac{4(x^2+1)-4x\cdot 2x}{(x^2+1)^2}$$

$$\frac{4x^{2}+4-8x^{2}}{(x^{2}+1)^{2}}$$

$$f' = \frac{7 - 9x^2}{(x^2 + 1)^2}$$

$$4 - 4x^2 = 0$$

$$f' = \frac{4 - 4x^{2}}{(x^{2} + 1)^{2}} \qquad 4 - 4x^{2} = 0$$

$$(x^{2} + 1)^{2} \qquad 4 = 4x^{2}$$

$$(1 - x^{2}) \rightarrow 4(1 + x)(1 - x) = 0$$

$$(x - 1)$$

How to find absolute extrema over an interval

$$g(t) = 2t^3+3t^2-12t+4$$
 on the interval [-4,2]



Byggst ontput - Absman 5 millest output - Absmin

Example on

How to find absolute extrema over an interval

 $g(t) = 2t^3+3t^2-12t+4$  on the interval [-4,2]

of find critical Numbers

$$g(t) = 6t^2 + 6t - 12 = 0$$

$$h(t^2t + -2) = 0$$

$$6(t-1)(t+2)=0$$

$$g(2) = \frac{2(2)^{3} + 3(2)^{2} - 12(2) + 4}{2(2)^{3} + 3(2)^{2} - 12(2) + 4}$$

$$= 8$$

Homework

p.167 #17-28