15.
$$f(x) = x^3 - 6x^2 + 12x$$

$$f'(x) = 3x^2 - 12x + 12$$

$$f''(x) = 6(x - 2) = 0$$
 when $x = 2$.

Concave upward: $(2, \infty)$

Concave downward: $(-\infty, 2)$

Point of inflection: (2, 8)

16.
$$f(x) = -x^3 + 6x^2 - 5$$

$$f'(x) = -3x^2 + 12x$$

$$f''(x) = -6x + 12 = -6(x - 2) = 0$$
 when $x = 2$.

Concave upward: $(-\infty, 2)$

Concave downward: $(2, \infty)$

Point of inflection: (2, 11)

17.
$$f(x) = \frac{1}{2}x^4 + 2x^3$$

$$f'(x) = 2x^3 + 6x^2$$

$$f''(x) = 6x^2 + 12x = 6x(x+2)$$

$$f''(x) = 0$$
 when $x = 0, -2$

Concave upward: $(-\infty, -2), (0, \infty)$

Concave downward: (-2, 0)

Points of inflection: (-2, -8) and (0, 0)

18.
$$f(x) = 4 - x - 3x^4$$

$$f'(x) = -1 - 12x^3$$

$$f''(x) = -36x^2 = 0$$
 when $x = 0$.

Concave downward: $(-\infty, \infty)$

No points of inflection

19.
$$f(x) = x(x-4)^3$$

 $f'(x) = x \Big[3(x-4)^2 \Big] + (x-4)^3 = (x-4)^2 (4x-4)$
 $f''(x) = 4(x-1) \Big[2(x-4) \Big] + 4(x-4)^2 = 4(x-4) \Big[2(x-1) + (x-4) \Big] = 4(x-4)(3x-6) = 12(x-4)(x-2)$
 $f''(x) = 12(x-4)(x-2) = 0$ when $x = 2, 4$.

Intervals:	$-\infty < x < 2$	2 < x < 4	4 < <i>x</i> < ∞
Sign of $f''(x)$:	f''(x) > 0	f''(x) < 0	f''(x) > 0
Conclusion:	Concave upward	Concave downward	Concave upward

Concave upward: $(-\infty, 2), (4, \infty)$

Concave downward: (2, 4)

Points of inflection: (2, -16), (4, 0)

20.
$$f(x) = (x-2)^3(x-1)$$

 $f'(x) = (x-2)^2(4x-5)$
 $f''(x) = 6(x-2)(2x-3)$

$$f''(x) = 0$$
 when $x = \frac{3}{2}$, 2.

Intervals:	$-\infty < x < \frac{3}{2}$	$\frac{3}{2} < x < 2$	2 < x < ∞
Sign of f'' :	f'' > 0	f'' < 0	f'' > 0
Conclusion:	Concave upward	Concave downward	Concave upward

Concave upward: $\left(-\infty, \frac{3}{2}\right)$, $\left(2, \infty\right)$

Concave downward: $\left(\frac{3}{2}, 2\right)$

Points of inflection: $\left(\frac{3}{2}, -\frac{1}{16}\right)$, (2, 0)

21.
$$f(x) = x\sqrt{x+3}$$
, Domain: $[-3, \infty)$

$$f'(x) = x\left(\frac{1}{2}\right)(x+3)^{-1/2} + \sqrt{x+3} = \frac{3(x+2)}{2\sqrt{x+3}}$$

$$f''(x) = \frac{6\sqrt{x+3} - 3(x+2)(x+3)^{-1/2}}{4(x+3)}$$

$$= \frac{3(x+4)}{4(x+3)^{3/2}} = 0 \text{ when } x = -4.$$

x = -4 is not in the domain. f'' is not continuous at x = -3.

Interval:	$-3 < x < \infty$
Sign of f'' :	f'' > 0
Conclusion:	Concave upward

Concave upward: $(-3, \infty)$

There are no points of inflection.

22.
$$f(x) = x\sqrt{9 - x}$$
, Domain: $x \le 9$

$$f'(x) = \frac{3(6 - x)}{2\sqrt{9 - x}}$$

$$f''(x) = \frac{3(x - 12)}{4(9 - x)^{3/2}} = 0 \text{ when } x = 12.$$

x = 12 is not in the domain. f'' is not continuous at x = 9.

Interval:	$-\infty < x < 9$
Sign of f'' :	f'' < 0
Conclusion:	Concave downward

Concave downward: $(-\infty, 9)$

No point of inflection

23.
$$f(x) = \frac{4}{x^2 + 1}$$
$$f'(x) = \frac{-8x}{(x^2 + 1)^2}$$
$$f''(x) = \frac{8(3x^2 - 1)}{(x^2 + 1)^3}$$

$$f''(x) = 0 \text{ for } x = \pm \frac{\sqrt{3}}{3}$$

Intervals:	$-\infty < x < -\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{3} < x < \frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{3} < x < \infty$
Sign of f'' :	f'' > 0	f'' < 0	f'' > 0
Conclusion:	Concave upward	Concave downward	Concave upward

Concave upward:
$$\left(-\infty, -\frac{\sqrt{3}}{3}\right), \left(\frac{\sqrt{3}}{3}, \infty\right)$$

Concave downward:
$$\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$$

Points of inflection:
$$\left(-\frac{\sqrt{3}}{3}, 3\right)$$
 and $\left(\frac{\sqrt{3}}{3}, 3\right)$

24.
$$f(x) = \frac{x+3}{\sqrt{x}}$$
, Domain: $x > 0$

$$f'(x) = \frac{x-3}{2x^{3/2}}$$

$$f''(x) = \frac{9 - x}{4x^{5/2}} = 0 \text{ when } x = 9$$

Intervals:	0 < x < 9	9 < <i>x</i> < ∞
Sign of f'' :	f'' > 0	f'' < 0
Conclusion:	Concave upward	Concave downward

Concave upward: (0, 9)

Concave downward: $(9, \infty)$

Points of inflection: (9, 4)