Good afternoon: no warm up today;
Reminders: - No open lunch this Thursday (makeup for missed day)
- first assessment is on Friday

A given differentiable function has critical numbers x=3 and x=2.

How do you determine which is a maximum? Minimum? What would the case be where a number is a critical number but not a max or min?

Optimization (NOTES)

Using geometry to set up a problem and using calculus to find the maximum or minimum

Identify: geometry of the problem equation to optimize constraint(s)

Our rectangular yard needs a fence. We have 500 feet of fencing material and a building is on one side of the yard and so won't need any fencing. What should the dimensions of the fenced yard be to have the maximum area?

marea?
$$A = X:Y \quad \text{Joptimize}$$

$$Y \quad 2x + y = 500 \quad \text{Jonstraint}$$

$$S \quad Y = 500 - 2x$$

$$A = X(500 - 2x)$$

$$A = 500x - 2x^{2}$$

$$A'(x) = 500 - 4x = 0$$

$$X = 12x$$

You have a piece of cardboard that is 14 inches by 10 inches and you're going to cut out the corners as shown below and fold up the sides to form a box, also shown below. Determine the height of the box that will give a maximum volume.

can you visualize this??

Find maximum of V: need critical numbers of V, or where V'(h)=0

$$V' = 140 - 96 h + 12h^2 = 0$$
 $V' = 4(3h^2 - 24h + 35)$
Factor??? It can't be factored :(

Quadratic formula:
$$\chi = \frac{b^{+} \sqrt{b^{2} - 4ac}}{2a}$$

$$h = \frac{24 \pm 1(-24)^2 - 4(3)(35)}{2(3)}$$

Hw:

p 220 #17-21

come to ds on Thursday plz

4 Relatel Rates.