An alternate way to find areas under curves:
Example: Find the area of the region bounded by the curve $y=\sqrt{x-1}$, the y-axis and the lines $y=1$ and $y=5$.
Sketch first:

Note that the bases of the rectangles that will comprise the area are now horizontal (meaning they are x -values) and their infinitely small heights are given by $d y$.

Since $d y$ will be your variable of integration, and your function is currently in terms of x, it will be wise to re-write the function in terms of y. In other words, solve the curve for x.

$$
\begin{aligned}
& \left(\begin{array}{l}
\\
y^{2}=(\sqrt{x}=x-1)^{2}
\end{array}\right)^{2} x=y^{2}+1
\end{aligned}
$$

You now have a function which will give you the base of any horizontally-aligned rectangle for a given y-value.

Now, set up an integral with respect to y which will sum up the areas of all of these rectangles:

$$
\int-1\left(y^{2}+1\right) d y
$$

$$
\begin{array}{r}
\left.\int_{a}^{3} f(x)=F(x)\right]_{a}^{b} \\
F(b)-F(a)
\end{array}
$$

Practice: Find the area of the region bounded by the functions $y=\sin (x), y=0$, and $y=1, \mathcal{X} \equiv 0$.

Area Between Two Curves
Let us consider the region bounded by two functions on top and bottom (and, as we'll see, left and right) as below:

$$
f(x)
$$

That leads us to this general formula:

Practice: Find the area of the region bounded by $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=\sqrt{x}$.

$$
\int_{0}^{1} x^{1 / 2}-x^{2}
$$

Note that the bound of integration are not given. How do you find them?

Which is your upper function? Which is the lower?

$$
\text { upper }=\sqrt{x} \quad \text { lower }=x^{2}
$$

Set up, simplify, then integrate:

Practice 2: Determine the area of the region bounded by $y=\sin (x), y=\cos (x)$, and the lines $x=0$ and $x=\frac{\pi}{2}$.

$$
\begin{aligned}
& \left(A_{2}\right)=\int_{\pi / 4}^{\pi / 2} \sin (x)-\cos (x) d x \\
& \quad-\cos (x)-\sin (x)]_{\pi / 2}^{\pi / 2} \\
& -\cos \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{2}\right)-\left(-\cos (\pi / 4)-\sin \left(\frac{\pi}{4}\right)\right) \\
& -0-1-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right. \\
& -1--\sqrt{2} \\
& -1+\sqrt{2} \\
& \sqrt{2}-1 \quad A=\underbrace{\sqrt{2}-1+\sqrt{2}-1}
\end{aligned}
$$

Worksheet \#3:


```
32/3-32/5 - (-32/3-32/5)
32/3-32/5 - 32/3-32/5
64/3-64/5
820/15-192/15
128/15
```

