1. Use the definition of continuity to show that $f(x)$ is continuous at $\mathrm{x}=1 f(x)=\left\{\begin{array}{cc}3 x+5 & x<1 \\ 8 x & x=1 \\ 2 x^{2}+6 & x>1\end{array}\right.$

F-C2
2. Find the values of a and b that will make this function continuous everywhere:

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-5 & x<0 \\
a x+b & 0 \leq x<2 \\
2 x^{2}-6 & x \geq 2
\end{array}\right.
$$

F-C3

1. Find and classify any discontinuities of the function. Justify your answer with limits.
$f(x)=\frac{x-3}{2 x^{2}-2 x-12}$
