1. Which of the following is continuous at x = 0?

I.
$$f(x) = |x|$$

II. $f(x) = e^x$
III. $f(x) = \ln(e^x - 1)$

A) I only

B) II only

- C) I and II only
- D) II and III only
- E) none of these

2. The graph of a function f is reflected across the x-axis and then shifted up 2 units. Which of the following describes this transformation on f?

- A) -f(x)B) f(x) + 2
- C) -f(x+2)D) -f(x-2)
- E) -f(x) + 2
- **3.** Which of the following functions is *not* continuous for all real numbers x?

A)
$$f(x) = x^{1/3}$$

B) $f(x) = \frac{2}{(x+1)^4}$
C) $f(x) = |x+1|$
D) $f(x) = \sqrt{1+e^x}$
E) $f(x) = \frac{x-3}{x^2+9}$

4. $\lim_{x \to x^{-}}$	$ \lim_{x \to 1} \frac{\ln x}{x} \text{ is} $
A)	1
B)	0
C)	e
D)	-e
E)	nonexistent

5.
$$\lim_{x \to 0} \left(\frac{1}{x} + \frac{1}{x^2} \right) =$$

A) 0
B) $\frac{1}{2}$
C) 1
D) 2

E) ∞

6.
$$\lim_{x \to \infty} \frac{x^3 - 4x + 1}{2x^3 - 5} =$$

A) $-\frac{1}{5}$
B) $\frac{1}{2}$
C) $\frac{2}{3}$
D) 1
E) Does not exist

- 7. For what value of k does $\lim_{x \to 4} \frac{x^2 x + k}{x 4}$ exist?
 - **A)** -12
 - **B)** -4
 - **C)** 3
 - **D)** 7
 - E) No such value exists.

8. $\lim_{x \to x^{-1}}$	$\lim_{x \to 0} \frac{\tan x}{x} =$
A)	-1
B)	$-\frac{1}{2}$
C)	0
D)	$\frac{1}{2}$
E)	1

9. Suppose f is defined as

$$f(x) = \begin{cases} \frac{|x| - 2}{x - 2} & x \neq 2\\ k & x = 2. \end{cases}$$

Then the value of k for which f(x) is continuous for all real values of x is k =

- **A)** −2
- **B)** −1
- **C)** 0
- **D)** 1
- **E)** 2

10. The average rate of change of $f(x) = x^3$ over the interval [a, b] is

A) 3b + 3aB) $b^2 + ab + a^2$ C) $\frac{b^2 + a^2}{2}$

D)
$$\frac{b^3 - a^3}{2}$$

E) $\frac{b^4 - a^4}{4(b-a)}$

11. The function

$$G(x) = \begin{cases} x - 5 & x > 2\\ -5 & x = 2\\ 5x - 13 & x < 2 \end{cases}$$

is not continuous at x = 2 because

- A) G(2) is not defined.
- **B)** $\lim_{x\to 2} G(x)$ does not exist.

C)
$$\lim_{x \to 2} G(x) \neq G(2)$$

D)
$$G(2) \neq -5.$$

E) None of the above

12.
$$\lim_{x \to -2} \frac{\sqrt{2x+5}-1}{x+2} =$$
A) 1
B) 0
C) ∞
D) $-\infty$
E) does not exist

13. The Intermediate Value Theorem states that given a continuous function f defined on the closed interval [a, b] for which 0 is between f(a) and f(b), there exists a point c between a and b such that

- A) c = a bB) f(a) = f(b)
- **C)** f(c) = 0
- D) f(0) = c
- **E)** c = 0
- **14.** The function $t(x) = 2^x \frac{|x-3|}{x-3}$ has
 - A) a removable discontinuity at x = 3.
 - **B)** an infinite discontinuity at x = 3.
 - C) a jump discontinuity at x = 3.
 - D) no discontinuities.
 - E) a removable discontinuity at x = 0 and an infinite discontinuity at x = 3.

15. Find the values of c so that the function

$$h(x) = \begin{cases} c^2 - x^2 & x < 2\\ x + c & x \ge 2 \end{cases}$$

is continuous everywhere.

- **A)** −3, −2
- **B)** 2,3
- **C)** −2,3
- D) −3,2
- E) There are no such values.