Good afternoon: warm up in notebooks

Below is an alternate definition of continuity (write it down)

$$f(x)$$
 is continuous at x=c if $\lim_{x\to c^-} f(x) = f(c) = \lim_{x\to c^+} f(x)$

- 1. Explain each part in words, using the analogy of roads and bridges.
- 2. Use this definition to determine if the following is continuous everywhere:

$$f(x) = \begin{cases} x^2 - 4x & x \neq 3 \\ 5 & x = 3 \end{cases}$$

ans

- 1. left road meets bridge meets right road
- 2. both pieces are continuous everywhere else...are they cont.

at
$$x=3??$$

lim from left:
$$3^2-4(3) = -3$$

f(3) = 5

$$f(3) = 5$$
 lim from right: 3^2 - $4(3) = -3$

What is a limit?

as you approach 3, what is the y value?

X	f(x)
عرا	ब <u>ा</u> ं
3.49	. 99
::	:
3.1	ا ب ع
3.1	امم ^ت

Absolute Value Limits

$$\lim_{x \to 1} \frac{|x|}{|x-1|} = \lim_{x \to 1} = \lim_{x \to 1} \frac{|x|}{|x-1|} = \lim_{x \to 1} \frac{|x|}{|x-1|} = \lim_{x$$

Absolute values are actually piecewise functions

- 1. Find where argument >0
- 2. Rewrite function as piecewise
- 3. Take limit from both sides

$$\lim_{x \to 5} \frac{|x - 5|}{x^2 + 3} \qquad |x - 5| = 0$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ -(x - 5) & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x^2 + 3}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

$$|x - 5| = \begin{cases} \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \\ \frac{x - 5}{x^2 + 3} & |x - 5| = 0 \end{cases}$$

Is calculus all about limits?

but it is the backbone of the two major topics in Calculus I:

- the slope of a curve
- the accumulation of infinite slices

Find the value of a so that f(x) is continuous everywhere

http://bit.ly/detcont1

$$f(x) = \begin{cases} 2x + 5 & x \le 1 \\ ax + 2 & x > 1 \end{cases}$$

$$f(x) = f(x) = f(1) = \int_{x \to 1^+} f(x)$$

$$7 = 7 = a(1) + 2$$

$$7 = a + 6$$

http://bit.ly/detcont3

Find the values of a and b such that f(x) is continuous

$$f(x) = \begin{cases} -2x^{2} + 3, & x < 0 \\ ax + b, & 0 \le x \le 1 \\ 9x & x > 1 \end{cases}$$

$$Cont @ 0?$$

$$L \cdot f = f(0) = L \cdot f(x)$$

$$X \to 0$$

P.80 # 61-66
99-106

Calchat. Com

Assess: Mendange. Weds D. S.