Good afternoon: warm up in notebooks

Below is an alternate definition of continuity (write it down)

f(z) is continuous at x=c if lim f(x) = f(c) = lim f(x)

1. Explain each part in words, using the analogy of roads and bridges.
2. Use this definition to determine if the following is continuous everywhere:
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What is a limit?

as you approach 3,
what is the y value?
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Absolute Value Limits
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Absolute values

are actually piecewise functions

1. Find where argument >0
2. Rewrite function as piecewise
3. Take limit from both sides







Is calculus all about limits?
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but it is the backbone of the two
major topics in Calculus I:

- the slope of a curve
- the accumulation of infinite slices



Find the value of a so that f(z) is continuous everywhere
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Find the values of a and b such that f(x) is continuous

—2x?+3, x<0 Cont (@ x|
4(-"6)= ax+b, 0<x<1 /————'—"‘
Con# {@ 0>x>1 QN -F('O L(D Q/\/'F(K)

b G g

L’C £(=4: 5¢) arh = 9

Wyt
::: A A 3:: Ci
\ & e 6




p8Y 4 pl-¢¢

t 9l=ok

M
C \U d‘\h\ .

Rese s

.{,/’/__'_

b$ 1/



