How to find the area under a curve?

Generalization:

Riemann definition of Definite Integral: if f is a continuous function on $[\mathrm{a}, \mathrm{b}]$ and this interval is equally divided into n intervals of width $\Delta x=\frac{b-a}{n}$, and if $x_{i}=a+i \Delta x$ is the right endpoint of subinterval i, then:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

If $f(x)$ is the derivative of $F(x)$, then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

For real numbers a and b (called the limits of integration). It is not required that $a<b$.

The Definite Integral as net change

An object moves along the x -axis such that its velocity in cm / s is given by $(t)=2 t$. At time $t=0 s$, the object is at the origin. After 3 seconds, how far as the object traveled?

1. Find the specific position function $x(t)$.
2. Use the position function to find the difference between the positions ("displacement") at time $t=3$ and time $t=0$.
3. Find the exact area (using geometry) under the velocity function in the same time interval as problem 2. Use units in your calculations.
4. Write a definite integral that will find the displacement. Then use the second FTC to evaluate the integral.
5. In a complete sentence, write a conjecture about what you think the definite integral can be used to find.

Connection between Area and Antiderivatives and Slope
For each function, use geometry to find the area $\mathrm{A}(\mathrm{x})$ under the function $\mathrm{f}(\mathrm{x})$ between -1 and some arbitrary point x (or, over the interval $[-1, \mathrm{x}]$). Then, find $\mathrm{A}^{\prime}(\mathrm{x})$. What do you notice about $\mathrm{f}(\mathrm{x})$ and $\mathrm{A}^{\prime}(\mathrm{x})$?

2.

3.

Now go back and find the area under the curve using the FTC:

1. $\int_{-1}^{x} 2 d x$
2. $\int_{-1}^{x} x+1 d x$
3. $\int_{-1}^{x} 2 x+3 d x$

AP Calculus AB
Name
© 2016 Kuta Software LLC.

Definite Integrals Practice

Date

\qquad

Evaluate each definite integral.

1) $\int_{1}^{4}-\frac{1}{x^{3}} d x$
2) $\int_{1}^{4}(-x+2) d x$
3) $\int_{0}^{3}(-2 x-1) d x$
4) $\int_{-3}^{1}(-2 x-2) d x$
5) $\int_{1}^{4}-\frac{2}{x} d x$
6) $\int_{1}^{3}\left(x^{3}-4 x^{2}+4\right) d x$
7) $\int_{-3}^{-1}\left(2 x^{2}+12 x+14\right) d x$
8) $\int_{-2}^{-1} \frac{2}{x^{3}} d x$
9) $\int_{1}^{4}(x-1) d x$
10) $\int_{-4}^{-1}-\frac{4}{x} d x$
