How to find the area under a curve?

Riemann definition of Definite Integral: if f is a continuous function on [a,b] and this interval is equally divided into n intervals of width $\Delta x = \frac{b-a}{n}$, and if $x_i = a + i\Delta x$ is the right endpoint of subinterval i, then:

$$\lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x = \int_a^b f(x) dx$$

The Fundamental Theorem of Calculus: Part 2

If f(x) is the derivative of F(x), then:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

For real numbers a and b (called the limits of integration). It is <u>not</u> required that a < b.

The Definite Integral as net change

An object moves along the x-axis such that its velocity in cm/s is given by (t) = 2t. At time t = 0 s, the object is at the origin. After 3 seconds, how far as the object traveled?

1. Find the specific position function x(t).

2. Use the position function to find the difference between the positions ("displacement") at time t = 3 and time t = 0.

3. Find the exact area (using geometry) under the velocity function in the same time interval as problem2. Use units in your calculations.

- 4. Write a *definite* integral that will find the displacement. Then use the second FTC to evaluate the integral.
- 5. In a complete sentence, write a conjecture about what you think the definite integral can be used to find.

Connection between Area and Antiderivatives and Slope

For each function, use geometry to find the area A(x) under the function f(x) between -1 and some arbitrary point x (or, over the interval [-1,x]). Then, find A'(x). What do you notice about f(x) and A'(x)?

Now go back and find the area under the curve using the FTC: C^{x}

1.
$$\int_{-1}^{x} 2 dx$$

2. $\int_{-1}^{x} x + 1 dx$
3. $\int_{-1}^{x} 2x + 3 dx$

Name_

© 2016 Kuta Software LLC. All rights reserved. Definite Integrals Practice

Date

Evaluate each definite integral.

1)
$$\int_{1}^{4} -\frac{1}{x^{3}} dx$$
 2) $\int_{1}^{4} (-x+2) dx$

3)
$$\int_{0}^{3} (-2x-1) dx$$

4) $\int_{-3}^{1} (-2x-2) dx$

5)
$$\int_{1}^{4} -\frac{2}{x} dx$$
 6) $\int_{1}^{3} (x^{3} - 4x^{2} + 4) dx$

7)
$$\int_{-3}^{-1} (2x^2 + 12x + 14) dx$$
 8) $\int_{-2}^{-1} \frac{2}{x^3} dx$

9)
$$\int_{1}^{4} (x-1) dx$$
 10) $\int_{-4}^{-1} -\frac{4}{x} dx$