Derivative Rules AP MC Q's

Handwritten number is the year; No Calculator

85 6. If
$$f(x) = x$$
, then $f'(5) =$
(A) 0 (B) $\frac{1}{5}$ (C) 1 (D) 5 (E) $\frac{25}{2}$
97 4. If $f(x) = -x^3 + x + \frac{1}{x}$, then $f'(-1) =$
(A) 3 (B) 1 (C) -1 (D) -3 (E) -5
88 15. If $f(x) = \sqrt{2x}$, then $f'(2) =$
(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{2}$ (D) 1 (E) $\sqrt{2}$
93 1. If $f(x) = x^{\frac{3}{2}}$, then $f'(4) =$
(A) -6 (B) -3 (C) 3 (D) 6 (E) 8
93 24. If $f(x) = (x^2 - 2x - 1)^{\frac{2}{3}}$, then $f'(0)$ is
(A) $\frac{4}{3}$ (B) 0 (C) $-\frac{2}{3}$ (D) $-\frac{4}{3}$ (E) -2
95 23. $\frac{d}{dx}(\frac{1}{x^2} - \frac{1}{x} + x^2)$ at $x = -1$ is
(A) -6 (B) -4 (C) 0 (D) 2 (E) 6
95 2. If $f(x) = (2x + 1)^4$, then the 4th derivative of $f(x)$ at $x = 0$ is
(A) 0 (B) 24 (C) 48 (D) 240 (E) 384

13

		-1		2			<u> </u>			(E)		
85	3.	If $y = \frac{1}{4}$	$\frac{3}{+x^2}$, the	$\frac{dy}{dx} =$								
		(A) ${4}$	$\frac{-6x}{+x^2}\Big)^2$	(B) ${(4+1)}$	$\frac{3x}{(x^2+x^2)^2}$	(C)	$\frac{6x}{\left(4+x^2\right)}$	$\left(\frac{1}{2}\right)^2$ (D) - ($\frac{-3}{\left(4+x^2\right)^2}$	· (E)	$\frac{3}{2x}$
7 2.	If <i>f</i> ($(x) = x\sqrt{2}$	$\overline{x-3}$, the	f'(x) =								
	(A)	$\frac{3x-3}{\sqrt{2x-3}}$										
	(B)	$\frac{x}{\sqrt{2x-3}}$										
	(C)	$\frac{1}{\sqrt{2x-3}}$										
	(D)	$\frac{-x+3}{\sqrt{2x-3}}$										
	(E)	$\frac{5x-6}{2\sqrt{2x-3}}$	=									
3 10	. If <i>f</i>	$\hat{x}(x) = (x - x)$	$(1)^2 \sin x$	then $f'(0)$	0) =							
		-2			((C) 0		(D)	1		(E) 2	
												1

97 7.
$$\frac{d}{dx}\cos^2(x^3) =$$

(A) $6x^2\sin(x^3)\cos(x^3)$
(B) $6x^2\cos(x^3)$
(C) $\sin^2(x^3)$
(D) $-6x^2\sin(x^3)\cos(x^3)$
(E) $-2\sin(x^3)\cos(x^3)$
17 28. If $f(x) = \tan(2x)$, then $f'(\frac{\pi}{6}) =$
(A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) 4 (D) $4\sqrt{3}$ (E) 8
18 If $f(x) = \sin(e^{-x})$, then $f'(x) =$
(A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$ (E) $\sqrt{3}$
18 If $y = 2\cos(\frac{\pi}{2})$
(B) $-2\cos(\frac{\pi}{2}) =$
(A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $-\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$ (E) $\sqrt{3}$
18 If $y = 2\cos(\frac{\pi}{2})$, then $\frac{d^2y}{dx^2} =$
(A) $-8\cos(\frac{\pi}{2})$ (B) $-2\cos(\frac{\pi}{2})$ (C) $-\sin(\frac{\pi}{2})$ (D) $-\cos(\frac{\pi}{2})$ (E) $-\frac{1}{2}\cos(\frac{\pi}{2})$

73 4	If $f(x) = x + \sin x$, then $f'(x) =$		
	(A) $1 + \cos x$	(B) $1-\cos x$	(C) $\cos x$
	(D) $\sin x - x \cos x$	(E) $\sin x + x \cos x$	
	······································	· · · · · · · · · · · · · · · · · · ·	
73 9.	If $y = \cos^2 3x$, then $\frac{dy}{dx} =$		
	(A) $-6\sin 3x\cos 3x$	(B) $-2\cos 3x$	(C) $2\cos 3x$
	(D) $6\cos 3x$	(E) $2\sin 3x \cos 3x$	
%5 ¹	8. If $y = \cos^2 x - \sin^2 x$, then $y' =$ (A) -1 (B) 0 (C) -2 sin	$n(2x)$ (D) $-2(\cos x + \sin x)$	(E) $2(\cos x - \sin x)$
85 6. 8 C	If $f(x) = \frac{x}{\tan x}$, then $f'\left(\frac{\pi}{4}\right) =$		
	(A) 2 (B) $\frac{1}{2}$	(C) $1 + \frac{\pi}{2}$ (D) $\frac{\pi}{2} - 1$	(E) $1 - \frac{\pi}{2}$
93 31.	If $f(x) = e^{3\ln(x^2)}$, then $f'(x) =$		· · · · · · · · · · · · · · · · · · ·
	(A) $e^{3\ln(x^2)}$ (B) $\frac{3}{x^2}e^{3\ln(x^2)}$	(C) $6(\ln x)e^{3\ln(x^2)}$ (D) $5x^4$	(E) $6x^5$
93 1 BC	5. If $f(x) = e^{\tan^2 x}$, then $f'(x) =$		
BC	(A) $e^{\tan^2 x}$		
	(B) $\sec^2 x e^{\tan^2 x}$		
	(C) $\tan^2 x e^{\tan^2 x - 1}$		
-	(D) $2\tan x \sec^2 x e^{\tan^2 x}$		
	(E) $2 \tan x \sec^2 x e^{-2\pi i \pi x}$		
J.	(12) $2 \tan x e^{-1}$		
6			

8. 8.					
	(A) 1	(B) 2	(C) $2x$	(D) e^{-2x}	(E) $2e^{-2x}$
			н на селото на селот Селото на селото на с		
77 76.	If $f(x) = \frac{e^{2x}}{2x}$, t	hen $f'(x) =$	· .		
, .	(A) 1				
	(B) $\frac{e^{2x}(1-2x)}{2x^2}$	<u>)</u>	·		
	(C) e^{2x}				
	(D) $\frac{e^{2x}(2x+1)}{x^2}$	<u>)</u>			
	(E) $\frac{e^{2x}(2x-1)}{2x^2}$				
	(E) $\frac{1}{2x^2}$	-			
	If $f(x) = (x-1)^{\frac{3}{2}}$	$+\frac{e^{x-2}}{2}$, then $f'(2)$	=		
99 ^{5.} BC	If $f(x) = (x-1)^{\frac{3}{2}}$ (A) 1		= (C) 2	(D) $\frac{7}{2}$	(E) $\frac{3+e}{2}$
				(D) <u>7</u> 	(E) $\frac{3+e}{2}$
BC	(A) 1	(B) $\frac{3}{2}$		(D) <u>7</u> 	(E) $\frac{3+e}{2}$
BC	(A) 1 22. $\frac{d}{dx}(\ln e^{2x})$	(B) $\frac{3}{2}$	(C) 2		L
BC	(A) 1 22. $\frac{d}{dx}(\ln e^{2x})$	(B) $\frac{3}{2}$			L
3C 	(A) 1 22. $\frac{d}{dx}(\ln e^{2x})$	(B) $\frac{3}{2}$	(C) 2		L
BC 64 Ag	(A) 1 $22. \frac{d}{dx} \left(\ln e^{2x} \right) = \frac{d}{dx} \ln \left(\frac{1}{e^{2x}} \right) = \frac{d}{dx} \ln \left(\frac{1}{e^$	(B) $\frac{3}{2}$ (B) $\frac{2}{e^{2x}}$	(C) 2 (C) 2 <i>x</i>	(D) 1	(E) 2
BC 64 Ag	(A) 1 $22. \frac{d}{dx} \left(\ln e^{2x} \right) = \frac{d}{dx} \ln \left(\frac{1}{e^{2x}} \right) = \frac{d}{dx} \ln \left(\frac{1}{e^$	(B) $\frac{3}{2}$ (B) $\frac{2}{e^{2x}}$	(C) 2	(D) 1	(E) 2

88	1. If $y = x^2 e^x$, the	hen $\frac{dy}{dx} =$			•
	(A) $2xe^x$		(B) $x(x+2e)$,x)	(C) $xe^{x}(x+2)$
	(D) $2x + e^x$	·	(E) $2x+e$		
88 6	If $y = \frac{\ln x}{x}$, then	$\frac{dy}{dx} =$			
	(A) $\frac{1}{x}$	(B) $\frac{1}{x^2}$	(C) $\frac{\ln x - 1}{x^2}$	(D) $\frac{1-\ln x}{x^2}$	(E) $\frac{1+\ln x}{x^2}$
88 : R	3. If $f(x) = \ln(\sqrt{x})$	(x), then $f''(x) =$		· · · · ·	
••			(C) $-\frac{1}{2x}$	(D) $-\frac{1}{2x^{\frac{3}{2}}}$	(E) $\frac{2}{x^2}$
85 17 82	If $f(x) = x \ln \left(x^2\right)$ (A) $\ln \left(x^2\right) + 1$,	2 (C) $\ln(x^2) +$	$\frac{1}{x}$ (D) $\frac{1}{x^2}$	(E) $\frac{1}{x}$
<mark>ይድ</mark> ^{8.} ይር	If $f(x) = e^x$, then	$\ln \ln (f'(2)) =$			
ßC	(A) 2	(B) 0	(C) $\frac{1}{e^2}$	(D) 2e	(E) e^2
73 1. BC	If $f(x) = e^{1/x}$, the (A) $-\frac{e^{1/x}}{x^2}$		(C) $\frac{e^{1/x}}{x}$	(D) $\frac{e^{1/x}}{x^2}$	(E) $\frac{1}{x}e^{(1/x)-1}$
31. BC	If $f(x) = \ln(\ln x)$, then $f'(x) =$			
18	(A) $\frac{1}{x}$	(B) $\frac{1}{\ln x}$	(C) $\frac{\ln x}{x}$	(D) x	(E) $\frac{1}{x \ln x}$

9 25.
$$\frac{d}{dx}(2^{x}) =$$

(A) 2^{x-1} (B) $(2^{x-1})x$ (C) $(2^{x})\ln 2$ (D) $(2^{x-1})\ln 2$ (E) $\frac{2x}{\ln 2}$
9 10. If $y = 10^{\binom{d^{2}-1}{2}}$, then $\frac{dy}{dx} =$
(A) $(\ln 10)10^{\binom{d^{2}-1}{2}}$ (B) $(2x)10^{\binom{d^{2}-1}{2}}$ (C) $(x^{2}-1)10^{\binom{d^{2}-2}{2}}$
(D) $2x(\ln 10)10^{\binom{d^{2}-1}{2}}$ (E) $x^{2}(\ln 10)10^{\binom{d^{2}-1}{2}}$
9 10. What is the instantaneous rate of change at $x = 2$ of the function f given by $f(x) = \frac{x^{2}-2}{x-1}$?
(A) -2 (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) 2 (E) 6
1
2 1. The value of the derivative of $y = \frac{\sqrt[3]{x^{2}+8}}{\sqrt[3]{2x+1}}$ at $x = 0$ is
(A) -1 (B) $-\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$ (E) 1
2
4 *if* u, v , and w are nonzero differentiable functions, then the derivative of $\frac{uv}{w}$ is
(A) $\frac{uv'+u'y}{w'}$ (B) $\frac{u'v'w-uvw'}{w'^{2}}$ (C) $\frac{unw'-uv'w-u'ww}{w'^{2}}$
(D) $\frac{u'w+uv'w+uw'w}{w'^{2}}$ (E) $\frac{uv'w+u'w-uvw'}{w'^{2}}$
6 3 If $y = \tan u, u = v - \frac{1}{v}$, and $v = \ln x$, what is the value of $\frac{dv}{dx}$ at $x = e$?
(A) 0 (B) $\frac{1}{e}$ (C) 1 (D) $\frac{2}{e}$ (E) $\sec^{2}e$

98 8.

Let f and g be differentiable functions with the following properties:

(i) g(x) > 0 for all x (ii) f(0) = 1

If h(x) = f(x)g(x) and h'(x) = f(x)g'(x), then f(x) =

(A) f'(x) (B) g(x) (C) e^x (D) 0

(E) 1

20

98 5. If f and g are twice differentiable and if h(x) = f(g(x)), then h''(x) =**BC**

- (A) $f''_{(g(x))}[g'(x)]^2 + f'(g(x))g''(x)$
- (B) f''(g(x))g'(x) + f'(g(x))g''(x)
- (C) $f''(g(x))[g'(x)]^2$
- (D) f''(g(x))g''(x)
- (E) f''(g(x))

3 18.
$$\frac{d}{dx}(\arcsin 2x) =$$

(A) $\frac{-1}{2\sqrt{1-4x^2}}$
(B) $\frac{-2}{\sqrt{4x^2-1}}$
(C) $\frac{1}{2\sqrt{1-4x^2}}$
(D) $\frac{2}{\sqrt{1-4x^2}}$
(E) $\frac{2}{\sqrt{4x^2-1}}$

§5 20. If
$$y = \arctan(\cos x)$$
, then $\frac{dy}{dx} =$
(A) $\frac{-\sin x}{1 + \cos^2 x}$ (B) $-(\arccos(\cos x))^2 \sin x$ (C) $(\arccos(\cos x))^2$
(D) $\frac{1}{(\arccos x)^2 + 1}$ (E) $\frac{1}{1 + \cos^2 x}$

20

1999 N.