Good afternoon

No warm up today; check hw sols

- 87 polynomials are continuous, so IVT applies f(1)=3.083 and f(2)=-2.667. 0 is between these, so by IVT, there is some c between 1 and 2 such that f(c)=0
- 88. polynomials are continuous, so IVT applies f(0)=-3 and f(1)=3. 0 is between these, so by IVT, there is some c between 0 and 1 such that f(c)=0
- 89. polynomials and cosine are continuous, so IVT applies f(0)=-3 and $f(\pi)=8.87$. 0 is between these, so by IVT, there is some c between 0 and π such that f(c)=0
- 90. $f(x) = -\frac{5}{x} + \tan\left(\frac{\pi x}{10}\right)$ is continuous on the interval [1, 4]. $f(1) = -5 + \tan\left(\frac{\pi}{10}\right) \approx -4.7$ and $f(4) = -\frac{5}{4} + \tan\left(\frac{2\pi}{5}\right) \approx 1.8$. By the Intermediate Value Theorem, there exists a number c in [1, 4] such that f(c) = 0.

95. c=3 (note that -4 is not in
$$[0,5]$$

96.
$$c=2$$
 (note that 4 is not in [0,3]

98.
$$c=3$$
 (note that 2 is not in [2.5,4]

112. Let
$$V = \frac{4}{3}\pi r^3$$
 be the volume of a sphere with radius r .

V is continuous on [5, 8].
$$V(5) = \frac{500\pi}{3} \approx 523.6$$
 and

$$V(8) = \frac{2048\pi}{3} \approx 2144.7$$
. Because

523.6 < 1500 < 2144.7, the Intermediate Value Theorem guarantees that there is at least one value r between 5 and 8 such that V(r) = 1500. (In fact, $r \approx 7.1012$.)

98)
$$f(x) = \frac{x^2 + x}{x - 1} = \frac{1}{4} = \frac{1$$

Wednesday's assessment:

similar to this homework + AP IVT questions handed out Friday [F-C4]

Remember that a function must be continuous for IVT to apply. Must state that before applying

Review skills:

- Showing that a function is (dis)continuous [F-C1]
- Finding and justifying discontinuities [F-C3]

Limit Definition of Derivative
the slope of the tangent line
at (x, f(x)) is given by $\lim_{X \to \infty} \frac{f(X + \Delta X) - f(X)}{\Delta X}$ (X+DK, f(X+OX)

- Slope of the line tangent to a curve
- Instantaneous rate of change (vs. average rate of change)
- "Velocity" (as opposed to position)
- limit of the difference quotient
- slope at 1 point
- 'curviness' of a function at one point

Notation: be comfortable with all of these!

f(x)

dX d4 $\frac{dx}{dx} \left[\frac{1}{\sqrt{2}} \right]$

 $\int_{x} \left[\sqrt{y} \right]$

MY FIRST DERIVATIVE Find the slope of the line tangent to $f(x)=x^2-4x+3$ at the point (3,0)(x+0x)2-4(x+0x)+3-x3+1x-3

HW:		
11 77 .		