

assessment: Monday (practice coming Thursday)

$$g(x) = e^{x^{2}} \cdot (x^{2}+2)$$
 $f' = e^{x^{2}} \cdot 2x$
 $f' = e^{x^{2}} \cdot 2x$
 $f' = e^{x^{2}} \cdot 2x$
 $e^{x^{2}} \cdot 2x \cdot (x^{2}+2) + e^{x^{2}} \cdot 2x$
 $e^{x^{2}} \cdot 2x \cdot (x^{2}+2) + e^{x^{2}} \cdot 2x$
 $e^{x^{2}} \cdot 2x \cdot (x^{2}+2) + e^{x^{2}} \cdot 2x$

Your history with functions

Constant Linear Absolute Value Quadratic Cubic, Quartic, Polynomial Rational Exponential Logarithmic Trigonometric Inverse Trigonometric

Can you take its derivative?

Inverse Trig Derivatives

First: what even is an inverse trig function??

$$e^{t}$$
 Sin(Θ) = ratio
 cos "
 tan "

First: what even is an inverse trig function??

$$cos \quad cos \quad cos^{-1}(\cdot \cdot \cdot) = Cos^{-1}(\cdot \cdot) = Cos^{-1}(\cdot \cdot \cdot) = Cos^{$$

Inverse Trig Derivatives (the last rules to remember!!)

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}} \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2-1}}$$

Find g'(x) if $g(x)=\arccos(x^2)$

We can now take derivatives of every function type!! But, algebraically is only one of 4 lenses we view calculus Verbally, Numerically, Algebraically, Graphically

HW keep working on handout from yesterday choose 6 from each of the 3 sections

