2.10 Tangents, Normals, and Continuity (Revisited)

491. Find the equation of the tangent line to the curve $y = \sqrt{x^2 - 3}$ at the point (2, 1).

492. Find the equation of the normal line to the curve $y = (3x - 1)^2(x - 1)^3$ at x = 0.

493. Find the equation of the tangent line to the curve $y = \sqrt{3x - 1}$ that is perpendicular to the line 3y + 2x = 3.

494. Find the equation of the normal line to the curve $y = x\sqrt{25 + x^2}$ at x = 0.

495. Find the equation of the tangent line to the curve $y = \frac{2-x}{5+x}$ at x = 1.

496. Find the equation of the normal line to the curve $y = \frac{5}{(5-2x)^2}$ at x = 0.

497. Find the equation of the tangent line to the curve $y = 3x^4 - 2x + 1$ that is parallel to the line y - 10x - 3 = 0.

498. The point P(3, -2) is not on the graph of $y = x^2 - 7$. Find the equation of each line tangent to $y = x^2 - 7$ that passes through P.

For the following Six problems, determine if f is differentiable at x = a.

$$\begin{array}{ll} \textbf{499.} \ f(x) = |x+5|; \ a = -5 \\ \textbf{500.} \ f(x) = \begin{cases} x+3 & x \leq -2 \\ -x-1 & x > -2 \end{cases} \ a = -2 \\ \textbf{501.} \ f(x) = \begin{cases} 2 & x < 0 \\ -x-4 & x \geq 0 \end{cases} \ a = 0 \\ \textbf{504.} \ f(x) = \begin{cases} \sqrt{2-x} & x < 2 \\ (2-x)^2 & x \geq 2 \end{cases} \ a = 2 \end{array}$$

505. Suppose that functions f and g and their first derivatives have the following values at x = -1 and at x = 0.

x	f(x)	g(x)	f'(x)	g'(x)
-1	0	-1	2	1
0	-1	-3	-2	4

Evaluate the first derivatives of the following combinations of f and g at the given value of x.

a) 3f(x) - g(x), x = -1b) $[f(x)]^3[g(x)]^3$, x = 0c) g(f(x)), x = -1d) f(g(x)), x = -1e) $\frac{f(x)}{g(x) + 2}$, x = 0f) g(x + f(x)), x = 0

Number rules the universe. —Pythagoras