Good afternoon: Warm up in notes (write the question this time)

$$f(x)=3-8x$$
 Find $\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ with as little effort as possible.

$$f'(x) = -8$$

because a derivative is the slope of a function

What is this good for?

A particular investment's value as a function of time can be modeled by $v(t) = \frac{t^3}{4} - 4t^2 + \frac{75}{4}t - 20$ where t is measured in months since opening and v is measured in thousands of dollars.

What is the value of the portfolio exactly 5 months into the investment?

How fast is it losing money then?

Discovering a pattern among polynomials and their derivatives

What's the derivative of something like....

$$\frac{t^3}{4} - 4t^2 + \frac{75}{4}t - 20$$

Practice: find dy/dx for each.

$$y=3x^{3} \Rightarrow \frac{dy}{dx} = 3 \cdot (3x^{2}) = \frac{9x^{2}}{4x^{2}}$$

$$f(x)=-2x^{5} = -2 \cdot 5x^{4}$$

$$= \frac{-10x^{4}}{4x^{2}}$$

$$y=5x^{3}-2x^{4}+3=\frac{1}{4x^{2}}$$

$$\sqrt{5x^{2}-2x^{4}}+6$$

$$\sqrt{5x^{2}-2x^{2}}$$

Common Sense Derivative Properties (add to booklet)

$$\frac{d}{dx}c = 0 \quad \text{(where c is a constant)}$$
 (to do Friday)

$$\frac{d}{dx}cx = c \qquad (where c is a constant)$$

$$\frac{d}{dx}[c*f(x)] = c*f'(x) [can "factor out" a constant]$$

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g(x)$$

[derivative of a sum/diff is the sum/diff of derivatives]

Revisiting...

A particular investment's value as a function of time can be modeled by $v(t) = \frac{t^3}{4} - 4t^2 + \frac{75}{4}t - 20$ where t is measured in months since opening and v is measured in thousands of dollars.

What is the value of the portfolio exactly 5 months into the investment? How fast is it losing money then?

$$v'(5)=?$$
 $v'(t)=\frac{3}{4}t^{2}-8t+\frac{75}{4}$
 $v'(5)=-2.5$
 $v'(5)=-2.5$