AP Calculus: warm up in notes (write the questions)

1. Find y' for
$$y=6x^3-2x^2+\pi$$

$$y'=6.3x'-2.2x'+0$$

$$y'=6.3x'-2.2x'+0$$
2. y=e⁶. Find dy/dx

2.
$$y=e^6$$
. Find dy/dx

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^3 - 3(x + \Delta x)^4 + 2(x + \Delta x) - (x^3 - 3x^4 + 2x)}{\Delta x}$$

$$f'=\int_{X\to 0}^{f(x+\Delta x)}-f(x)$$

$$-3x^4+x^3+2x$$

Another real world case

(notes)

A stone is tossed from a bridge 48 feet above the water level. Its position is modeled by $s(t)=-16t^2+32t+48$ where s is measured in feet and t in seconds

- When does the rock hit the water? s(t) = 0

→How fast is it traveling when it hits the water?

When is the stone standing still?

$$\frac{ds}{dt}\Big|_{t=3} = -32(3) + 32$$

Standing Still

wel. = 0

$$\frac{ds}{dt} = 0 = -32t + 32$$

$$-32t = -32t$$

$$1 = t$$

$$-16(t^2-2t-3)=0$$

Common Sense Derivative Properties (add to booklet)

$$\frac{d}{dx}c = 0 \qquad (where c is a constant)$$

$$\frac{d}{dx}cx = c \qquad (where c is a constant)$$

$$\frac{d}{dx}[c*f(x)] = c*f'(x) [can "factor out" a constant]$$

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g(x)$$

[derivative of a sum/diff is the sum/diff of derivatives]

Calculus cartoons from Dr Jeneva Moseley (UTK/Lee U)

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x}$$

$$\frac{d}{dx}x^n = nx^{n-1}$$

To use the Power Rule a function/term must be in this form:

 $ax^n \\$

What'cha gonna do?

First Derivatives Hw p. 114 #3-18, 25-30, 39-46 [D-C7] Due Monday

Reassessment!
Prepping for them,
Taking them

Q1 ends Oct 6