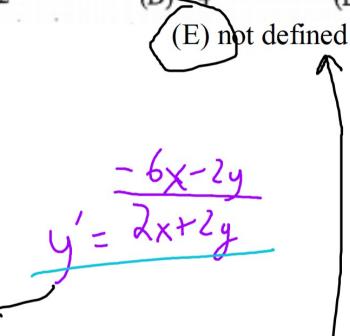
Good afternoon and welcome back: warm up

Next assessment: Monday

(E)

If $3x^2 + 2xy + y^2 = 2$, then the value of $\frac{dy}{dx}$ at x = 1 is



Now plug in x=1...but what's y?

$$y' = \frac{-6-2y}{2+2y}$$

That's what the original function tells us!

Plug x=1 into that
$$3(1)^{2}+2(1)(y)+y^{2}=2$$

$$3+2y+y^{2}=2$$

$$y^{2}+2y+1=0$$

$$(y+1)(y+1)=0$$

$$y=-1$$

$$y' = \frac{-6-2(-1)}{2+2(-1)}$$

$$\frac{-4}{0}$$

More Practice with Implicit Differentiation

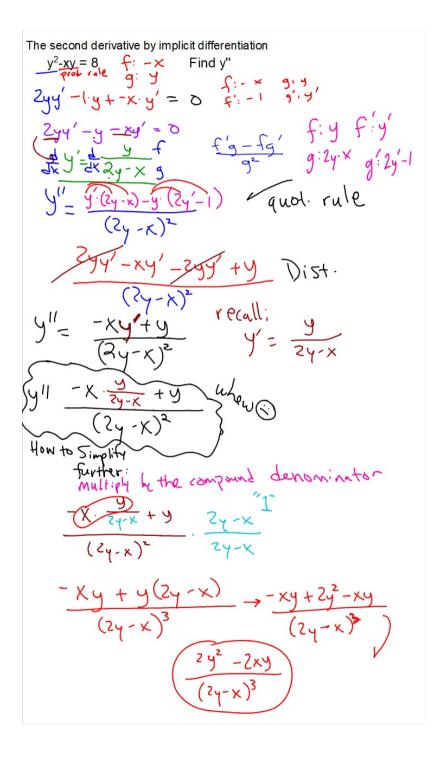
The slope of the line tangent to the curve $y^2 + (xy+1)^3 = 0$ at (2,-1) is

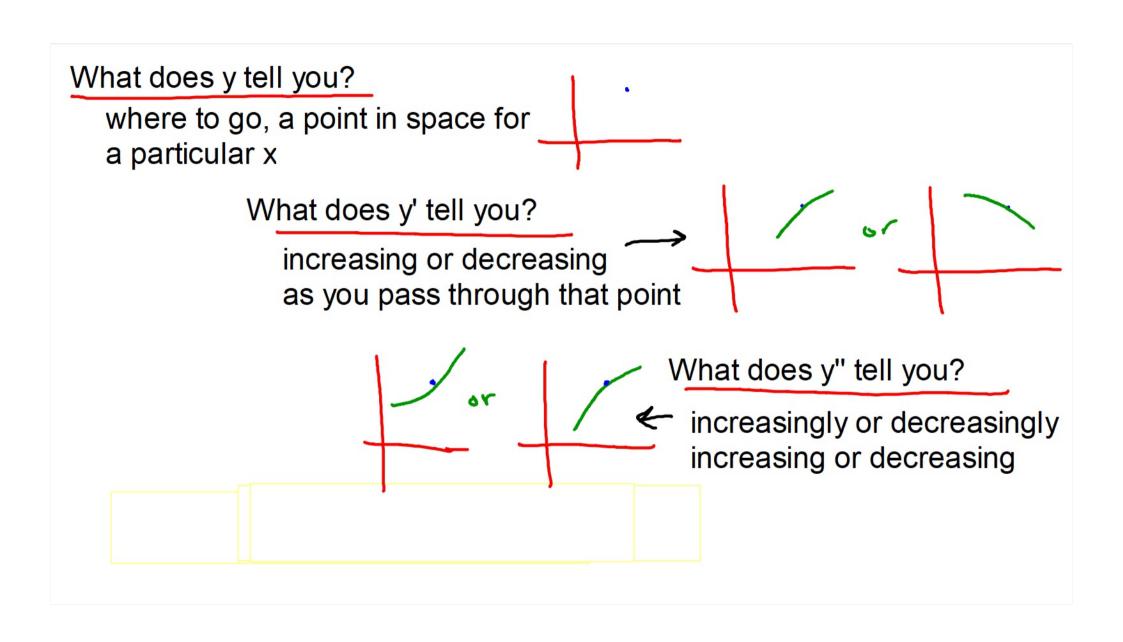
(A)
$$-\frac{3}{2}$$
 (B) $-\frac{3}{4}$

$$2y \cdot y' + 3(xy+1)^{2}(y+xy')$$

$$y'(2y+3x(xy+1)^{2}$$

(D)
$$\frac{3}{4}$$





For $2x^3-3y^2=8$, show that $y'' = \underbrace{2xy^2-x^4}_{y^3}$

Warm UP Tues. Consider the curve given by $xy^2 - x^3y = 6$.

- (a) Show that $\frac{dy}{dx} = \frac{3x^2y y^2}{2xy x^3}.$
- (b) Find all points on the curve whose x-coordinate is 1, and write an equation for the tangent line at each of these points.
- (c) Find the x-coordinate of each point on the curve where the tangent line is vertical.

HW due Thursday
"Misc. Review" handout