AP Calculus

Assessments are being passed back

Turn review packets in if not yet turned in

Hopefully you watched the videos yesterday...(if not, do so tonight!!)

Today's goals: volumes of cross sections practice + slope fields (need to have sheet I handed out last week)

Differential Equations:				1 100/		1 Line
What are they?	an	equation	that	(nu olves	$ \wedge $	delivative
What do they do?						

How do I use them?

Differential equations	Meaning
$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$	The electric field leaving a volume is proportional to the charge inside.
$\nabla \cdot \mathbf{B} = 0$	There are no magnetic monopoles; the total magnetic flux piercing a closed surface is zero.
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	The voltage accumulated around a closed circuit is proportional to the time rate of change of the magnetic flux it encloses.
$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$	Electric currents and changes in electric fields are proportional to the magnetic field circulating about the area they pierce.

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

Basic questions:

Bacteria in a culture are observed to grow at a rate proportional to the number of cells present. At the beginning of an experiment, there are 10,000 cells present. After 3 hours, there are 500,000. How many will there be after 24 hours? What is the doubling time for this system?

So

$$y = e^{3x}$$

$$\frac{dy}{dx} = 3e^{3x}$$

$$\frac{dy}{dx} = 3y$$

