AI.

- () Graph Equations/Base Region; Find Intersections if Needed.
- (2) Draw representative Rectangle, 30 view are 20 view of cross section
- (3) Find Area of Cross section A(x) in terms of X

$$\frac{\left(\frac{1}{\sqrt{1-\frac{1}{2}}},\frac{1}{\sqrt{1+\frac{1}{2}}}\right)}{\sqrt{1+\frac{1}{2}}}$$

$$\sqrt{x-\frac{x}{2}}$$

$$A(x) = \frac{1}{2}b \cdot h = \frac{1}{2}(\sqrt{x} - \frac{x}{2})(\sqrt{x} - \frac{x}{2})$$
 $A(x) = \frac{1}{2}(x - \frac{x}{2})(\sqrt{x} - \frac{x}{2})$

"Fail,"

etc.

$$V = \int_{0}^{4} \frac{1}{2} \left(x - x^{3/2} + \frac{1}{4} x^{2} \right) dx$$

$$V = \int_{0}^{4} \frac{1}{2} (x - x^{3/2} + \frac{1}{4} x^{2}) dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x^{2} dx$$

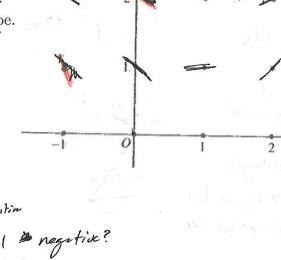
$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x + \frac{1}{4} x^{2} dx$$

$$V = \frac{1}{2} \int_{0}^{4} x - x + \frac{1}{4} x +$$

A(y) = 1. 712 $A(y) = \frac{\pi}{2} \left(g - \frac{1}{2} g^2 \right)^2$ $\sqrt{-\int_0^2 \frac{\pi}{2} \left(y - \frac{1}{2}y^2\right)^2} \, dy$ $= \frac{\pi}{2} \int_{0}^{2} \left(y - \frac{1}{2} y^{2} \right)^{2} dy$ J CALC. = 7. 4

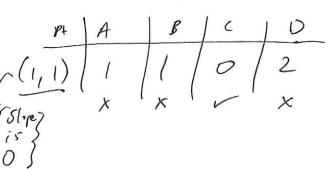
= 47 - 27 cubic unity

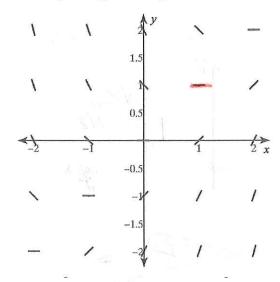

D-DE4

Consider the differential equation $\frac{dy}{dx} = \frac{x-1}{y^2}$

- 3. On the axes provided, sketch a slope field at the points indicated.
- 4. While only some points are graphed, the slope field drawn in the previous problem is defined for many others. Describe all points in the xy-plane that have negative slope.

×	y	1 dy/dx
0	1	-1
6	7	- 14
1	1	0
1	2.	O
2	1	\
2	2	\ '/4
-1	1	-2
- 1	2	1-1/2
D-D1	E5	


	0	
		MANAG
	*	
9x	$=\frac{\chi_{-1}}{\varphi^2}$	
	1	



So whe is X-1 = negotive?

- 5. Choose the differential equation that could be represented by the given slope field.
- $B) \frac{dy}{dx} = xy$
- C) $\frac{dy}{dx} = x y$ D) $\frac{dy}{dx} = x + y$

pick a representation, the (1,1)

