AP Calculus

Differential Equations: recognizing, translating, and separating Warm up (please do in notes) Solve each for x:

1.)
$$2 \ln(x) - 3 = 7$$

 $log_e = h \int ln(x) = 5$ $e^{5} = x$

$$x+2 = lnb$$

$$x - lnb-2$$

2.)
$$e^{x+2} = 6$$

logarithms are exponents.

Important Log/Exponent Properties to know:

$$log_b a = x \Leftrightarrow b^x = a$$

$$ln(ab) = ln(a) + ln(b) \approx \mathring{\lambda} \cdot \mathring{\lambda} = \mathring{\lambda}^{ty}$$
 $ln(a/b) = ln(a) - ln(b)$
 $a*ln(b) \Leftrightarrow ln(b^a)$

ex 1: The rate of change of the volume V of water in a tank with respect to time t is directly proportional to the square root of the volume. Write a differential equation that describes this relationship.

 $\frac{dV}{dt} = KVV$

K = factor of , the proportion

- 12. The rate of change of the volume, V, of water in a tank with respect to time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship?
 - (A) $V(t) = k\sqrt{t}$
 - (B) $V(t) = k\sqrt{V}$
 - (C) $\frac{dV}{dt} = k\sqrt{t}$
 - (D) $\frac{dV}{dt} = \frac{k}{\sqrt{V}}$
 - (E) $\frac{dV}{dt} = k\sqrt{V}$

Another: Out of a population of N people, a rumor is spreading at a rate proportional to the product of the people who have heard it and the people who haven't. If p is the number of people who have heard it, write a diff eq that models this behavior.

$$\frac{dP}{dt} = K \cdot P \cdot (N-P)$$

Your turn: The amount of bacteria in a culture B is growing at a rate that is proportional to the cube root of the bacteria present.

Write a differential equation that models this behavior:

dB = K VB

- 84. Population y grows according to the equation $\frac{dy}{dt} = ky$, where k is a constant and t is measured in years. If the population doubles every 10 years, then the value of k is
 - (A) 0.069
- (B) 0.200
- (C) 0.301
- (D) 3.322
- (E) 5.000 into 1

 $\frac{dy}{dt} = ky \implies y = Ce^{kt} \qquad (0, C)$

 $g(p) = \left(e^{k \cdot p}\right)$

= (

(0, 0)

- Je lok

 $\ln 2 = \frac{10k}{10}$

 $\widehat{A} \approx \frac{\ln 2}{10} = 10$

Separation of Variables: Find y if

$$\frac{dy}{dx} = (3y+6) dx$$

$$\frac{dy}{3y+6} = (3y+6) dx$$

$$\frac{3}{3} =$$

Newton's Law of Cooling:

$$\frac{dT}{dt} = k(T-S)$$
 where S is the surrounding temperature

