Inverse Trig Derivatives
Set $y=\sin ^{-1}(x)$. Find $\frac{d y}{d x}$ $\frac{d}{d x}(\lambda)=(\sin (y)) \frac{d}{d x}$ inverse twigs

$$
1=\cos (y) \frac{d y}{d x}
$$

always equal angles.

$$
\frac{\sqrt{x=\sin y}}{\frac{1}{\sqrt{1-x^{2}}}=\frac{d y}{d x}}
$$

$$
\begin{aligned}
& \frac{d}{d x} \cos ^{-1}(x)=\frac{-1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}
\end{aligned}
$$

Inverse Trig derivative example

$$
\begin{aligned}
& \frac{e x}{\frac{d}{d x}} \sin ^{-1}\left(3 e^{x^{2}}\right) \\
& =\frac{1}{\sqrt{1-\left(3 e^{4}\right)^{2}}} \cdot 3 e^{e^{x^{2}}} \cdot 2 x \\
& \frac{6 x e^{x^{2}}}{\sqrt{1-9 e^{4}}}
\end{aligned}
$$

Review: what is even an inverse trig function?

$$
\sin ^{-1}(\sin
$$

$$
\begin{aligned}
& \left.\theta=\frac{3}{12}\right) \operatorname{si} \\
& \sin ^{-1}(3 / 12)
\end{aligned}
$$

Find θ.

$$
\begin{aligned}
& \theta=\sin ^{-1}(3 / 12) \\
& \theta \approx 14.47^{\circ}
\end{aligned}
$$

10.)

$$
\int \sin 5_{x} \cdot \cos (5 x) d x
$$

Let $u=\cos (5 x) \quad \int \sin 5 x \cdot u \cdot \frac{d u}{-5 \sin 5 x}$

$$
\begin{aligned}
\begin{aligned}
& \frac{d u}{d x}=-5 \sin (5 x) \int \frac{u \cdot \sin s x \cdot d u}{-5 \sin s x} \\
& d u=-5 \sin S x \cdot d x \quad \int \frac{-1}{5} \cdot u \cdot d u \\
& \frac{d u}{-5 \sin 5 x}=d x \quad \frac{-1}{5} \int u \cdot d u \\
&-\frac{1}{5}\left(\frac{1}{2} u^{2}+C\right) \\
& \frac{-1}{10} u^{2}+C \\
&-\frac{1}{10} \cos ^{2}(\sqrt{x})+C
\end{aligned}
\end{aligned}
$$

