4.4 Using Geometry for Definite Integrals

Graph the integrands and use geometry to evaluate the definite integrals.
911. $\int_{-2}^{4}\left(\frac{x}{2}+3\right) d x=21$

Trapez.
914. $\int_{-1}^{1}(2-|x|) d x=3$

2 trapez.
912. $\int_{-3}^{3} \sqrt{9-x^{2} d x}=\frac{9 \pi}{2} \begin{gathered}\text { Sen- } \\ \text { Circle }\end{gathered}$
915. $\int_{0}^{b} x d x$ where bb $b 0=\frac{1}{2} b^{2}$ triangle
913. $\int_{-2}^{1}|x| d x=\frac{5}{2}$ triangles
916. $\int_{a}^{b} 2 x d x$ where $0<a<b$ Av. Bases height
917. Suppose f and g are continuous and that

$$
\int_{1}^{2} f(x) d x=-4, \quad \int_{1}^{5} f(x) d x=6, \quad \int_{1}^{5} g(x) d x=8
$$

Evaluate the following definite integrals.
a) $\int_{2}^{2} g(x) d x=0$
c) $\int_{1}^{2} 3 f(x) d x-12$
e) $\int_{1}^{5}[f(x)-g(x)] d x=-2$
b) $\int_{5}^{1} g(x) d x=-8$
d) $\int_{2}^{5} f(x) d x=10$
918. Suppose that $\int_{-3}^{0} g(t) d t=\sqrt{2}$. Find the following.
f) $\begin{aligned} & \int_{1}^{5}[4 f(x)-g(x)] d x \\ & 24-8=16\end{aligned}$
a) $\int_{0}^{-3} g(t) d t=-\sqrt{2}$
b) $\int_{-3}^{0} g(u) d u=\sqrt{2}$
c) $\int_{-3}^{0}-g(x) d x=-\sqrt{2}$
d) $\int_{-3}^{0} \frac{g(\theta)}{\sqrt{2}} d \theta=\frac{1}{\sqrt{2}} \int_{-3}^{\theta} g(\theta) d \theta$
919. A particle moves along the x-axis so that at any time $t \geq 0$ its acceleration is given by $a(t)=18-2 t$. At time $t=1$ the velocity of the particle is 36 meters per second and its position is $x=21$.

$$
V(1)=3 t
$$

$$
x(1)=21
$$

a) Find the velocity function and the position function for $t \geq 0$.
b) What is the position of the particle when it is farthest to the right?
Q.)

$$
\begin{aligned}
& V(t)=\int a(t) d t=\int 18-2 t d t=18 t-t^{2}+c \\
& V(t)=18 t-t^{2}+c \\
& V(1)=18-1+c=36 \Rightarrow c=19
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\int v(t) d t \\
& =\int 18 t-t^{2}+19 d t \quad \begin{array}{l}
\text { When you feel how } \\
\text { Slowly you climb, } \\
\text { It's well to remex }
\end{array} \\
& =9 t^{2}-\frac{1}{3} t^{3}+19 t+C \text { That things take time. } \\
& x(1)=21 \quad \text {-Piet rein } \\
& 9-\frac{1}{3}+19+c=21 \\
& \Rightarrow c=\frac{-20}{3} \\
& =1317 \mathrm{~m} \\
& x(t)=-\frac{1}{3} t^{3}+9 t^{2}+19 t-\frac{20}{3} \\
& \text { b.) Farthest right }=\max \text { position } \\
& \text { When you feel how depressingly } \\
& \text { Slowly you climb, } \\
& \max \text { position } \Rightarrow v(t)=0 \text { (rel. max) } \\
& 0=-t^{2}+18 t+19 \\
& 0=-\left(t^{2}-18 t-19\right) \\
& 0=-(t-19)(t+1) \\
& t=19 \quad t-1 \quad \text { Domain } \quad t=19
\end{aligned}
$$

