CHAPTER 4. INTEGRALS 105

4.4 Using Geometry for Definite Integrals

GRAPH THE INTEGRANDS AND USE GEOMETRY TO EVALUATE THE DEFINITE INTEGRALS.
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Evaluate the following definite integrals.
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918. Suppose that / g(t) dt = /2. Find the following.
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919. A particle moves along the z-axis so that at any time ¢ > 0 its acceleration is given by _— -y/i : @
a(t) = 18 —2t. At time t = 1 the velocity of the particle is 36 meters per second and its position '*
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a) Find the velocity function and the position function for ¢ > 0.

b) What is the position of the particle when it is farthest to the right?
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It’s well to remember
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