Using Geometry for Definite Integrals 4.4

GRAPH THE INTEGRANDS AND USE GEOMETRY TO EVALUATE THE DEFINITE INTEGRALS.

911.
$$\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx = 21$$
914.
$$\int_{-1}^{1} (2 - |x|) dx = 3$$
917. Suppose f and g are continuous and that
$$\int_{-1}^{2} f(x) dx = -4, \qquad \int_{1}^{5} f(x) dx = 6, \qquad \int_{1}^{5} g(x) dx = 8.$$
914.
$$\int_{-1}^{1} (2 - |x|) dx = 3$$
915.
$$\int_{-1}^{0} dx = 3$$
916.
$$\int_{-1}^{0} 2x dx \text{ where } b > 0 = \frac{1}{2} b^{2} \text{ triangle}$$
917.
$$\int_{-1}^{2} f(x) dx = -4, \qquad \int_{1}^{5} f(x) dx = 6, \qquad \int_{1}^{5} g(x) dx = 8.$$

Evaluate the following definite integrals.

χl

x(i)=

_

a)
$$\int_{2}^{2} g(x) dx = 0$$

b) $\int_{5}^{1} g(x) dx = -8$
c) $\int_{1}^{2} 3f(x) dx = /2$
d) $\int_{2}^{5} f(x) dx = 10$
f) $\int_{1}^{5} [4f(x) - g(x)] dx = -2$
f) $\int_{1}^{5} [4f(x) - g(x)] dx$
2 $\mathcal{Y} - \mathcal{Y} = \frac{1}{2}$
f) $\mathcal{Y} = \frac{1}{2}$
f)

9 J_{-3}

a)
$$\int_{0}^{-3} g(t) dt = -\sqrt{2}$$
 b) $\int_{-3}^{0} g(u) du = \sqrt{2}$ c) $\int_{-3}^{0} -g(x) dx = -\sqrt{2}$ d) $\int_{-3}^{0} \frac{g(\theta)}{\sqrt{2}} d\theta = \frac{1}{\sqrt{2}} \int_{-1}^{0} \frac{g(\theta)}{g(\theta)} d\theta$

919. A particle moves along the x-axis so that at any time $t \ge 0$ its acceleration is given by $\frac{1}{\sqrt{2}}$ if z : (1)a(t) = 18 - 2t. At time t = 1 the velocity of the particle is 36 meters per second and its position is x = 21. $\times(1) = 21$ V(1) = 36

a) Find the velocity function and the position function for $t \ge 0$.

b) What is the position of the particle when it is farthest to the right?

$$\begin{array}{c} (f) \quad \forall (t) = \int \alpha(t) dt = \int 18^{-2}t \ dt = 18t - t^{2} + C \\ \qquad \qquad \forall [t] = 18t - t^{2} + C \\ \qquad \forall [t] = 18t - t^{2} + C \\ \qquad \forall [t] = 18t - t^{2} + C \\ \qquad \forall [t] = 18t - t^{2} + 19 \\ \qquad \forall (t) = 18t - t^{2} + 19 \\ \qquad \forall (t$$