About 30 questions; some multiple choice, some short answer; no calculator and yes calculator sections

- Evaluate the indefinite integral for the following function types:
- Polynomial with integer exponents: $\int 3 x^{5}+2 x^{3}+x^{-2} d x ; \int\left(x^{3}+1\right)^{2} d x$
- Function with radicals that can be made into a polynomial $\int \sqrt[7]{x^{3}}(x-5) d x$
- Rational function that can be made into a polynomial $\int \frac{7 x^{5}-2 x^{3}+x}{\sqrt{x}} d x$

$$
\begin{aligned}
& \text { - Rational function that is actually an } \ln \text { problem: } \int \frac{1}{3 x} d x= \\
& \int \frac{1}{3 x} d x \rightarrow \int \frac{1}{3} \cdot \frac{1}{x} d x — \\
& \frac{1}{4} A \sec ^{2}(4 x) d x-\frac{1}{4} \tan (4 x)+C \rightarrow \frac{3}{4}\left(x^{3}-2\right)^{4 / 3 / 3}+c
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{6} \int 6 x\left(3 x^{2}+1\right)^{75} \rightarrow \frac{1}{6} \cdot \frac{1}{76}\left(3 x^{2}+1\right)^{76}+C \rightarrow \frac{1}{456}\left(3 x^{2}+1\right)^{76}+C
\end{aligned}
$$

$\frac{1}{2^{8}}(2 x-1)^{7}+$

$$
\begin{gathered}
\frac{7}{24}(2 x-1)^{6}+c \\
+0 \text { Usu }
\end{gathered}
$$

- Reverse chain rule involving trigonometric functions: $\int 4 x^{5} * \sin \left(12 x^{6}\right) d x$
- Finding C: given a derivative and an initial condition, find the particular solution with a value for C.

$$
2 \ln |t|+\frac{4}{3} t^{3}-e^{\exists t}+c=1, \text { the particle's position is } x(1)=5(t)^{3} \text {. Find } x(t) . \ln (t)+\frac{4}{3} t^{3}-e^{3 t^{3}}+\left(\frac{11}{3}+e^{3}\right)
$$

$$
S=0+\frac{4}{3}-e^{3}+C \Rightarrow C=C=\frac{11}{3}+e^{3}
$$

Review topics:

- Related rates without a variable substitution: (will be provided geometry formulas if they're not obvious)

Ex: A pebble falls in a pond and causes a circular ripple. The radius of the $\frac{d r}{2 r p p l e}=\frac{1}{2}$ increasing by 1 cm per

$$
\begin{aligned}
& C=12 \pi=2 \pi r \\
& =\frac{r=6}{=} \\
& \frac{d A}{d t}-?
\end{aligned}
$$

$\mathrm{Cm}^{2} / \mathrm{sec}$
Given that $x^{2}-x y+y^{2}=1$ Show that dy/dx is $\frac{-2 x-y}{x+2 y}$

$$
\frac{2 x}{d}+\left(y+x^{d} d x\right)+2 y \frac{d y}{d x}=0
$$

- Determining intervals of increasing/decreasing and concavity given a graph of F^{\prime}

$$
\begin{aligned}
& f^{\prime \prime} \text { neg } \\
& \rightarrow f^{\prime} \text { is decrees }
\end{aligned}
$$

Given the graph of F^{\prime}, when is F increasing? When is it concave down?

$$
\underset{\substack{\left.f^{\prime}>\right)^{\prime}>1,1, \infty}}{(-\infty,-1)}
$$

- Finding and justifying extrema
- Given $\mathrm{f}(\mathrm{x})=-x^{4}+2 x^{2}-1$, find the points that are local maximums. Justify your answer.

Set $f^{\prime}(x)=0$

$$
\begin{aligned}
& 1(x)=0 \\
& 4 x^{3}+4 x=0 \\
& 4 x\left(-x^{2}+1\right)=0
\end{aligned} \int_{x}^{x=0,-x^{2}+1=0} \begin{aligned}
& x=0 \text { mat } x= \pm 1
\end{aligned}
$$

test values

$$
\begin{aligned}
& 1 \text { second. At the instant the circumference is equal to, } 12 \text { pi how fast is the area changing? } \\
& \frac{1}{4} A=\left(-\pi r^{2}\right) \frac{d}{d t} \stackrel{y}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{u-c}{2} \quad \begin{array}{ll}
\frac{d x}{d x}=2 d x & \frac{1}{4} \int(u-1)\left(u^{(1)}\right) d u \\
d u=2 d x \\
d u
\end{array} \\
& \left(\frac{d u}{2}\right) d x \quad \frac{1}{4} \int^{3 / 2} u^{3 / u^{v_{2}}} \cdot d u \\
& \frac{1}{4}\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}+C\right] \\
& \frac{2}{20} u^{5 / 2}-\frac{1}{6} u^{3 / 2}+C \\
& \frac{1}{10}(2 x-1)^{5 / 2}-\frac{1}{6}(2 x-1)^{3 / 2}+C
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2} \csc (2 x)+c
\end{aligned}
$$

Rationals involving an \ln

$$
\begin{aligned}
& \int \frac{4 x}{2 x^{2}+1} d x- \\
& \int 4 x \cdot \frac{1}{2 x^{2}+1} d x \\
& \ln \left|2 x^{2}+1\right|+C \\
& \int \tan (x) d x \\
& \int \frac{\sin (x)}{\cos (x) \cdot d x} \\
& -\int-\sin (x) \frac{1}{\cos (x)} \cdot d x \\
& -\ln |\cos (x)|+C \\
& +\frac{1}{\cos }+\sin \rightarrow+\tan x
\end{aligned}
$$

