AP Calculus

HW Solutions

p 288 #6-30(x3) just check 'em w/ a calculator!

67.

x=5 15

x=8 72

(b)
$$\int_{2}^{6} f(x) dx$$

(c)
$$\int_{-4}^{2} f(x) \, dx$$

(d)
$$\int_{-4}^{6} f(x) \, dx$$

(e)
$$\int_{-4}^{6} f(x) dx$$

p274 #47

a. $\blacksquare \pi$ (quarter of a circle w/ radius 2)

b. 4 (area of triangle)

c. $-1-2\pi$ (tri + half circle)

d.
$$-1-2\pi+4 = 3-2\pi$$

e.
$$1+2\pi+4 = 5+2\pi$$

24,) Sy 3- /x-3/ dx

<u>Definite Integral:</u> - Is a number - Calculates area under curve (between function and x-axis) - Can accumulate net change/displacement - Sum of infinite rectangles

Practice Assessment: #7

I-A5

7.
$$\int_{3}^{4} -\frac{2}{2x-2} dx = -\int_{3}^{4} -\frac{1}{2x-2} dx = -\int_{3}^{4} -\frac{1}{2x-2} dx$$

- | $\left[\ln \left| 2x-2 \right| \right]$

$$\frac{-1[2n|24-2]-2n|2\cdot3-2|}{-1[2n|6-2n4)} \approx -0.405$$

How do you find the area under a curve?

 $\int_{a}^{b} f(x) dx$

$$\int_{a}^{c} f(x) dx$$

Practice Assessment: #6

I-A4a

6. Find the area of the region bounded by $f(x) = x^5 - 4x^3 + 3x + 4$, the x-axis, and the lines x = -2 and x = 1.

 $\int_{-3}^{1} x^{5} - 4x^{3} + 3x + 4 dx$

[16x-X4+3x2+4x]-2

$$\frac{1}{6}(1)^{2} - (1)^{4} + \frac{3}{2}(1)^{2} + 4(1) - (\frac{1}{6}(3)^{2} - (\frac{1}{2})^{4} + \frac{1}{2}(\frac{1}{2})^{2})$$

$$\frac{14}{3} - \frac{1}{2}$$

Even when some regions are negative:

height of this rectangle: f(x) - g(x)

base of this rectangle: delta x

therefore area of entire region is sum of infinite rectangles

$$\int_{a}^{b} f(x) - g(x) dx$$

Area Worksheet: #2 and 6		

Area Between Two Curves Method:

4x-x2=3

1. The diagram opposite shows the curve $y = 4x - x^2$ and the line y = 3.

- (a) Find the coordinates of A and B.
- (b) Calculate the shaded area.

$$4x^{2}-x^{2}-3=0$$
 $\chi=1$ $\chi=3$ $0=\chi^{2}-4\chi+3=(\chi-1)(\chi-3)$

2. The curves with equations $y = x^2$ and $y = 2x^2 - 25$ intersect at P and Q.

Calculate the area enclosed between the curves.

Calculate the shaded area.

 $2x^2 - 25$

4. The curves with equations $y = 2x^2 - 6$ and $y = 10 - 2x^2$ intersect at K and L.

Calculate the area enclosed by these two curves.

6. The curve y = x(x-3)(x+3) and the line y = 7x intersect at the points (0,0), (-4,-28) and (4,28).

Calculate the area enclosed by the curve and the line.

- (a) Find the coordinates of A and B.
- (b) Calculate the shaded area.

Big Assessment: Next Monday 2/29
Hw: - Work on practice assessment for big honkin' assessment 2/29 - Finish area between two curves worksheet for Friday - Test corrections due Weds