I-U1

1. Explain in words why
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x$
in the context of area under a curve. You may use an illustration to accompany your text.

I-U2
2. Find $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ for $\mathrm{f}(\mathrm{x})=-x^{2}+5$ over the interval $[0,4]$

I-U3a
3. Find the left Riemann approximation of $\int_{-4}^{-2} \frac{x^{2}}{2}+x+1$ using 4 intervals of equal width. Then, determine if this is an over or under approximation and explain how you know.

I-U3b
4. Find the midpoint Riemann approximation of $\int_{2}^{6} \frac{3}{x} d x$ using 4 intervals of equal width.

I-U3c
5. Shown below are selected values for a differentiable function $f(x)$. Find the difference in the left and right Riemann approximations of $\int_{0}^{8} f(x) d x$ using the intervals indicated by the table.

x	0	2	3	4	5	7	8
$f(x)$	3	4	2	4	2	3	2

I-A4a
6. Find the area of the region bounded by $f(x)=x^{5}-4 x^{3}+3 x+4$, the x -axis, and the lines $x=-2$ and $x=1$.

I-A5

7. $\int_{3}^{4}-\frac{2}{2 x-2} d x$

D-AD13
8. Find the interval(s) over which $f(x)=\frac{1}{6}\left(x^{3}+x^{2}-x\right)$ is decreasing and concave down.

I-A2a
9. $2 \int e^{\frac{x}{2}} * \cos \left(e^{\frac{x}{2}}\right) d x$

I-A1b
10. $\int \frac{8 x \cos 4 x^{2}}{\sin 4 x^{2}} d x$

I-A2b
11. $\int 5 x \sqrt{3 x+1} d x$
A) $\frac{2}{9}(3 x+1)^{\frac{5}{2}}-\frac{10}{27}(3 x+1)^{\frac{3}{2}}+C$
B) $\frac{1}{21}(3 x+1)^{\frac{7}{3}}-\frac{1}{12}(3 x+1)^{\frac{4}{3}}+C$
C) $\frac{2}{21}(3 x+1)^{\frac{7}{3}}-\frac{1}{6}(3 x+1)^{\frac{4}{3}}+C$
D) $\frac{8}{45}(3 x+1)^{\frac{5}{2}}-\frac{8}{27}(3 x+1)^{\frac{3}{2}}+C$

I-A3
12. Find y if $\frac{d y}{d x}=4 x+3$ and $y(-2)=0$.

