1. Find the volume of the solid generated by revolving the region bounded by $f(x)=2-\cos x$ and the vertical lines $x=2$ and $x=6$ about the x-axis. Show all work (No calculator)

2. Set-up a single integral to calculate the volume of the solid generated when the region bounded by $f(x)=x^{2}-2 x$ and $g(x)=x$ is revolved around the axis $y=4$. Then use a calculator to find that volume.

I-A5b

3. Let R be the region bounded by $g(x)=e^{x}$ and $h(x)=\frac{1}{4} x+1$. Find the volume of the solid formed by revolving R about the vertical line $x=1$. (Calc ok)

I-A5c
Let R be the first-quadrant region enclosed by
$f(x)=4 \sqrt{\sin \left(\frac{\pi x}{4}\right)}$ and $g(x)=x^{2}$.
4. Let R be the base of a solid whose cross-sections perpendicular to the x-axis are semicircles. Find the volume of this solid. (Calc ok)

5. Let R be the base of a solid whose cross-sections perpendicular to the x-axis are rectangles with height three times as long as the base. Find the volume of this solid. (Calc ok)

I-A7a
6. Find the average value of $f(x)=\frac{1}{x}$ over the interval [1,3]. (No Calc)
(calc ok)
7. Let $Q^{\prime}(t)=1-\cos \left(\frac{\pi t}{5}\right)$ model the rate, in hundreds of people per hour, enter an amusement park. Using correct units, explain the meaning of $\frac{1}{5} \int_{2}^{7} Q^{\prime}(t) d t$ in context. Then, find its value.

