I-A4a NO CALC

1. Find the exact area of the shaded region. Show all work.


## I-A4b CALC OK

2. Let $f(x)=e^{-x^{2}}$ and $g(x)=1-\cos (x)$. The regions R and S are bounded by $f(x), g(x)$, the y -axis, and the vertical line $x=1.5$. Find the total shaded area. Show the setup of your integrals and all related calculations.


I-U4: NO CALC
Let $f(x)=\int_{3}^{2 x} 2 t^{2}-3 t-2 d t$.
3 . Find $f^{\prime}(x)$. Simplify your answer.
4. Find all intervals where $f(x)$ is increasing. Justify your answer.

I-U7 NO CALC

$$
\int_{1}^{9} f(x) d x=-1, \quad \int_{7}^{9} f(x) d x=5, \quad \int_{7}^{9} h(x) d x=4
$$

5. $\int_{9}^{7}[h(x)-f(x)] d x$
6. $\int_{1}^{7} f(x) d x$

I-U5 NO CALC
7. $\int_{4}^{9} 2 x-\frac{1}{\sqrt{x}} d x$
8. If $\int_{-2}^{2}\left(x^{3}+k\right) d x=16$, then what is the value of $k$ ?

## I-A3 NO CALC

9. Suppose $f^{\prime}(x)=2 \sqrt{x}$ and $f(1)=4$. Find the value of $f(4)$.

## I-U3b CALC OK

10. Find the midpoint rectangle approximation for $\int_{3}^{7} \tan (0.2 x) d x$ using 4 rectangles of equal width. [3 decimal places of accuracy.]

## I-U3c NO CALC

11. An awesome rocket ship is in the air and doing cool rocket things. Its velocity $v(t)$ is a differentiable, strictly increasing function. Selected values are given below. Using correct units, explain the meaning of $\int_{2}^{10} v(t) d t$ in the context of this problem. Then, approximate the value of $\int_{2}^{10} v(t) d t$ using the 4 trapezoids indicated by the table.

| $t$, sec | 2 | 4 | 6 | 8 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $v(t), m / s$ | 12 | 18 | 27 | 38 | 52 |

