AP Calculus FYI: Next assess is Monday (B-day)

I-U4: Applying FTC 1 (front of worksheet, #1-8)

I-U7: Definite integral properties (p. 274 hw)

I-A7a: Average Value (p 288 hw)

I-A4b: Area Between Curves (worksheet, tonight's hw)

Net Change AP Problem: 2000AB4 no calc

Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \le t \le 120$ minutes. At time t=0, the tank contains 30 gallons of water.

- (a) How many gallons of water leak out of the tank from time t = 0 to t = 3 minutes?
- (b) How many gallons of water are in the tank at time t = 3 minutes?
- (c) Write an expression for A(t), the total number of gallons of water in the tank at time t.
- (d) At what time t, for 0 ≤ t ≤ 120, is the amount of water in the tank a maximum? Justify your answer.

6 minutes of private think time

Table Talk:

Start with person who woke up the latest today then go around the table to that person's left.

Once everyone has shared their ideas on the problem, work as a group to answer all 4 parts.

FTC in action: 2004AB5 no calc

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x) = \int_{-3}^{x} f(t) dt$.

- (a) Find g(0) and g'(0).
- (b) Find all values of x in the open interval (-5, 4) at which g attains a relative maximum. Justify your answer.
- (c) Find the absolute minimum value of g on the closed interval [-5, 4]. Justify your answer.
- (d) Find all values of x in the open interval (-5, 4) at which the graph of g has a point of inflection.

Share with your face-partner: (+) something you have learned today (+) something you are still not sure about

Area between curves, revisited:

NOTES

Find the area of the region bounded by $y = \sqrt{x-1}$ and the *horizontal*

lines y=1 and y=3.

General forms:

Area =
$$\int_{c}^{b} f(y) dy$$

John John Jx

Stright-left dy

