1. It's 10am and Frank has already used 8 mb of data on his cell phone. From 10am to midnight $(\mathrm{t}=24)$, his data usage rate can be modeled by the differentiable function $f(t)=\sin \left(\frac{\pi}{8} t\right)+1$ $\mathrm{mb} / \mathrm{hr}$. Write an equation that includes an integral that will give the amount of data Frank has used as of midnight. Then, find that amount and include units in your answer.

I-U9

The function $f(t)$ is shown over $[-6,6]$ and consists of line segments and a semicircle. Let $G(x)=\int_{-6}^{x} f(t) d t$
2. Find $G(0), G^{\prime}(0)$, and $G^{\prime \prime}(0)$.
3. Find $\mathrm{G}(\mathrm{x})$ relative maxima, if any, over [-6,6]. Justify your answer.

4. Find any points of inflection of $G(x)$. Justify.

I-U6

5. The FTC states: If $f(x)=\int_{a}^{x} g(t) d t$, then $f^{\prime}(x)=\frac{d}{d x} f(x)=\frac{d}{d x} \int_{a}^{x} g(t) d t=g(x)$. Explain this in your own words.

I-A5a

6. Consider the region bound by $\mathrm{y}=\sqrt{4-x}$ and the x and y axes. Set up an integral and then find the volume of the solid generated by revolving this region about the y-axis.

I-A5b
7. Consider the region between $y=x^{2}-2$ and $\mathrm{y}=\sqrt{x}-2$. Find the volume of the solid generated by revolving this region around the line $\mathrm{y}=2$.

