Good afternoon class: Mr Mohyuddin is (sadly) out at a math meeting but Ms Bryan is here to sub today:)

You will be receiving practice assessments for related rates shortly Solutions are posted at mcalc.weebly.com but give them an honest attempt first!

#### reminders:

- tutoring is still available today after school
- no open lunch tomorrow thanks

## Optimization hw

p 220

17. x=sqrt(30), plug back in to find y, y=sqrt(30). dimensions are 2+sqrt(30)



18. 
$$xy = 36 \Rightarrow y = \frac{36}{x}$$

$$A = (x+3)(y+3) = (x+3)\left(\frac{36}{x}+3\right)$$

$$= 36 + \frac{108}{x} + 3x + 9$$

$$\frac{dA}{dx} = \frac{-108}{x^2} + 3 = 0 \Rightarrow 3x^2 = 108 \Rightarrow x = 6, y = 6$$

Dimensions: 9 × 9



20.

$$S = 2x^{2} + 4xy = 337.5$$

$$y = \frac{337.5 - 2x^{2}}{4x}$$

$$V = x^{2}y = x^{2} \left[ \frac{337.5 - 2x^{2}}{4x} \right] = 84.375x - \frac{1}{2}x^{3}$$

$$\frac{dV}{dx} = 84.375 - \frac{3}{2}x^{2} = 0 \implies x^{2} = 56.25 \implies x = 10$$



19. 700 by 350

$$\frac{d^2V}{dx^2} = -3x < 0 \text{ for } x = 7.5.$$

The maximum value occurs when x = y = 7.5 cm.



Please work on the practice assessment for the remainder of class If finished checking solutions online, finish up the optimization/rates hw if needed Good afternoon: no warm up, will take notes when bell rings

#### reminders:

- tutoring is still available today after school
- no open lunch tomorrow thanks

Indefinite Integration aka Antidifferentiation

a quick example to dissect:

$$\int x^2 dx = \frac{1}{3} x^3 + C$$





integral sign integrand
(says, "here's thing we are finding a derivative... the antiderivative of what was the original function??")

Constant of integration (more on this in a moment)

$$\int x^2 dx = \frac{1}{3} x^3 + C$$

The solution to an indefinite integral is a family of functions

 $x^2$  is the derivative of 1/3  $x^3$ , but also 1/3  $x^3 + 1$ , 1/3 $x^3 + 4$ , 1/3 $x^3$  -22.1...etc

Because they all have the same slopes!! adding C is just a vertical translation



# Algebraically:

when you take the derivative of a constant, it goes away! so any constant could be in the original problem but disappears when given the integrand

$$\int 2x \ dx = x^2 + c$$

derivative of  $x^2+53$  (for example)

is 2x

derivative of  $x^2$  - 12 is also 2x

hence, the + C

How to check if you're right??

Just take the derivative of your answer and see if you get the integrand!!



The Reverse Power Rule

remember this? the power rule:



 $x^n \rightarrow nx^{n-1}$ 

- 1. multiply by exponent
- 2. decrement exp by 1

So in the opposite direction....

# divide

- 1. multiply by exponent 2. decrement exp by 1 increment

### So in the opposite direction....

### divide

- 1. multiply by exponent
- 2. decrement exp by 1 increment

example:



(ignore the 3, treat it as a coefficient as with derivs.)

$$\frac{3 \, \underline{x}^{6}}{5} + C$$
 $\frac{1}{2} \, x^{6} + C$ 

check to see if it's right!!

Reverse Power Rule (Add to booklets...first ever integration formula:)

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

example in notes:

$$\int 4x^2 - 6x^4 dx$$

(recall that derivative of sum or difference is just sum/diff of the derivatives....same holds true in reverse!!)

$$\int 4x^2 - 6x^4 dx$$

$$4\frac{x^3}{3} - 6\frac{x^5}{5} + C$$

$$\frac{4}{3}x^3 - \frac{6}{5}x^5 + C$$

Always check to make sure it's right if ever unsure!

#### Lots to put into your booklets: p. 246 right column

#### **Differentiation Formula**

$$\frac{d}{dx}[C] = 0$$

$$\frac{d}{dx}[kx] = k$$

$$\frac{d}{dx}[kf(x)] = kf'(x)$$

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

$$\frac{d}{dx}[\sin x] = \cos x$$

$$\frac{d}{dx}[\cos x] = -\sin x$$

$$\frac{d}{dx}[\tan x] = \sec^2 x$$

$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

$$\frac{d}{dx}[\csc x] = -\csc x \cot x$$

#### **Integration Formula**

$$\int 0 \, dx = C$$

$$\int k \, dx = kx + C$$

$$\int kf(x)\ dx = k \int f(x)\ dx$$

$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

Power Rule

$$\cos x \, dx = \sin x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\sec x \tan x \, dx = \sec x + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\csc x \cot x \, dx = -\csc x + C$$

ADD THESE

example:

$$\int \frac{2}{\sqrt[3]{x}} dx$$



$$\int \frac{2}{\sqrt[3]{x}} dx$$

$$\int 2x^{-\frac{1}{3}} dx$$

$$2\frac{x^{\frac{2}{3}}}{2} + C$$

$$2\frac{x^{\frac{2}{3}}}{2} + C$$

$$2\frac{x^{\frac{2}{3}}}{2} + C$$

$$2\frac{x^{\frac{3}{3}}}{2} + C$$

$$2\frac$$

classwork/homework

- p 251: #7-26, 50
- practice assessment on related rates

