I-U3a Practice Assessment

1. Find the left Riemann sum approximation of $\int_{1}^{4}-(x-3)^{2}+5 d x$ using 6 intervals of equal length. Use 3 decimal places of accuracy.
Solution
$\Delta x=\frac{b-a}{n}=\frac{4-1}{6}=\frac{3}{6}=\frac{1}{2}$ so intervals are spaced by $\frac{1}{2}$, being $1,1.5,2,2.5,3,3.5$, and 4
Since we want left sum, we use the all but the last one: $1,1.5,2,2.5,3,3.5$. Notice that this is 6 values, as required.

Riemann sum:

$$
\sum_{i=1}^{6} f\left(x_{i}\right) d x=f(1)\left(\frac{1}{2}\right)+f(1.5)\left(\frac{1}{2}\right)+f(2)\left(\frac{1}{2}\right)+f(2.5)\left(\frac{1}{2}\right)+f(3)\left(\frac{1}{2}\right)+f(3.5)\left(\frac{1}{2}\right)
$$

Factor out a $\frac{1}{2} \quad \frac{1}{2}[f(1)+f(1.5)+f(2)+f(2.5)+f(3)+f(3.5)]$
Plug each x into $f(x) \quad \frac{1}{2}[1+2.75+4+4.75+5+4.75]$

$$
\frac{1}{2}[22.25]=11.125
$$

2. Is your answer in \#1 an over or under approximation? Explain.

Solution

Since this function is increasing, the left-endpoint's y-value is always less than the right endpoint's yvalue. Thus the rectangles are shorter, so it is an under approximation.
3. Approximate $\int_{-5}^{-1}-\frac{5}{x} d x$ using a right Riemann approximation using 4 intervals of equal length. Use 3 decimal places of accuracy.
Solution
$\Delta x=\frac{b-a}{n}=\frac{-1--5}{4}=\frac{4}{4}=1$ so intervals are spaced by 1 being $-5,-4,-3,-2$, and -1
Since we want Right sum, we use the all but the first one: $-4,-3,-2,-1$. Notice that this is 4 values, as required.

Riemann sum:

$$
\sum_{i=1}^{4} f\left(x_{i}\right) d x=f(-4)(1)+f(-3)(1)+f(-2)(1)+f(-1)(1)
$$

Factor out a 1

$$
\begin{aligned}
& 1[f(-4)+f(-3)+f(-2)+f(-1)] \\
& 1[1.25+1.667+2.5+5] \\
& 1[10.417]=10.471
\end{aligned}
$$

Plug each x into $f(x) \quad 1[1.25+1.667+2.5+5]$
4. Is your answer in \#3 an over or under approximation? Explain.

Solution

Since this function is increasing, the right-endpoint's y-value is always more than the left endpoint's y-value. Thus the rectangles are taller, so it is an over-approximation.

