# [Group Work: Final 30 minutes of class] 

Agenda:

- Average rate examples
- Mean Value Theorem for Integrals
- Using accumulation

Find the average value of $f(x)=4\left(x^{2}+1\right)$ over the interval $[1,3]$

$$
\begin{aligned}
& \operatorname{a\cup g} \cup a l=\frac{1}{b-a} \cdot \int_{a}^{b} f(x) d x \\
& \frac{1}{3-1} \int_{1}^{3} \frac{4 x^{2}+4}{x^{2}} d x \\
& \frac{1}{2} \int_{1}^{3} 4+\frac{4}{x^{2}} d x \\
& \frac{1}{2} \int_{1}^{1} 4+4 x^{-2} d x \\
& \frac{1}{2}\left[4 x-\frac{4}{x} 2\right]_{1}^{3} \\
& \int \begin{array}{l}
4 x^{-2} x^{-n} \Leftrightarrow \frac{1}{x^{n}} \\
4 \frac{x^{-1}}{-1} \\
-4 x^{-1}
\end{array} \\
& \frac{1}{2}\left[\left(\begin{array}{c}
4+\frac{36}{3} \\
\frac{1}{2}-\frac{4}{3} \\
\frac{3 k}{3}(6)-\left(4.1-\frac{4}{41}\right)
\end{array}\right)\right] \\
& \frac{1}{2} \quad 3816=5.333
\end{aligned}
$$



Continuous sets must contain their mean

So,

Somewhere within $[1,3], f(x)$ equals exactly $16 / 3$
where is $f(x)=\frac{16}{3}$ ?

$$
\begin{aligned}
& \frac{4\left(x^{2}+1\right)}{x^{2}}=\frac{76}{3} \\
& 16 x^{2}=12\left(x^{2}+1\right) \\
& 16 x^{2}=12 x^{2}+12 \\
& 4 x^{2}-12=0 \quad 4 x^{2}=12 \\
& 4\left(x^{2}-3\right)=0 \quad x^{2}=3 \\
& 4(x-\sqrt{3}) x+\sqrt{3})=0 \\
& x= \pm \sqrt{3} \rightarrow(x=\sqrt{3})
\end{aligned}
$$

## Review: Mean Value Theorem



For $g(x)$ differentiable on ( $\mathrm{a}, \mathrm{b}$ ) there exists some $c$ in $(a, b)$ such that


Mean Value Theorem for Integrals (NEW!)

$$
\begin{aligned}
& \text { Mean Value Theorem for Integrals (NEW!) } \\
& g^{\prime}(x)=\frac{g(b)-g(a)}{b-a} \\
& g^{\prime}(x)=\frac{1}{b-a} \cdot[g(b)-g(a)] \\
& g^{\prime}(x)=\frac{1}{b-a} \int_{a}^{b} g^{\prime}(x) d x d x=\left[x^{2}\right]_{1}^{2} \\
& y^{2}
\end{aligned} \quad \int_{a}^{l^{\prime}-1^{2}} g^{e^{2}}(x) d \lambda=g(b)-g(a) .
$$

MV.T for Integral.


## Net Change

Let $R^{\prime}(t)$ model the rate at which our retirement fund earns money in thousands of dollars per year after $2000(t=0)$.

$$
R^{\prime}(t)=2 \sin \left(\frac{\pi t}{6}-13\right)+1
$$

In 2000, the fund had $\$ 25,000$ in it. How much money is in the fund in 2008? In 2016?

$$
R^{\prime}(t),
$$

thousands dollars/year

$$
R^{\prime}(t)=2 \sin \left(\frac{\pi t}{6}-13\right)+1
$$



$R(0)=25$
$R(8)=?$

## Net Change Theorem

FTC2 says this:

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Rearrange so that it becomes the net change theorem
$f(b)=f(a)+$ (integral from a to b of $\left.f^{\prime}(x) d x\right)$
future value $a t b=$ starting value at $a+$ sum of all the incremental changes from $a$ to $b$
$R^{\prime}(t)$,
thousands dollars/year

$$
R^{\prime}(t)=2 \sin \left(\frac{\pi t}{6}-13\right)+1
$$


$R(0)=25$

$$
R(8)=?
$$

Homework due Friday

Worksheet \#1-14
p. 288: \#45-55 odd [I-A7a]

