I-U1

1.

$$\lim_{n\to\infty} \sum_{i=1}^{n} f(x_i) \Delta x = \int_{a}^{b} f(x) dx$$

 $\lim_{n\to\infty} \sum_{i=1}^n f(x_i) \Delta x = \int_a^b f(x) dx$ where $\Delta x = \frac{b-a}{n}$. Explain why this is so in the context of area under a curve. You may use diagrams to accompany your explanation.

I-U2

Write a definite integral whose value equals

$$\lim_{n\to\infty} \sum_{i=1}^{n} \sec^2(3+\frac{5i}{n})\frac{5}{n}$$

3. Write the definite integral as an infinite Riemann sum using correct notation

$$\int_2^5 x^3 + \sqrt{x-1} \, dx$$

I-U3a

Find both the left and right rectangle approximations for $\int_5^7 20 - (x+3)^2 dx$ using 4 rectangles of equal width.

I-U3b

5. Approximate $\int_{-5}^{-1} -\frac{3}{x} dx$ using 4 trapezoids of equal width.

I-U3c

6. Selected values for f(x) are given in the table below. Use a midpoint Riemann sum to approximate $\int_{10}^{90} f(x) dx$ using 4 intervals of equal width.

J ₁₀) (w) and doing I intervene or equal within										
	\boldsymbol{x}	10	20	30	40	50	60	70	80	90
	f(x)	8	12	35	44	37	26	54	61	83

I-U5

Evaluate each definite integral.

7.
$$\int_{-1}^{3} x^2 - 2x \, dx$$

8.
$$\int_{2}^{5} \frac{3}{x+1} dx$$

I-A3

9. A particle is moving with acceleration $a(t) = -4t \, m/s^2$. Find its position at t=3 if its initial velocity is $-2 \, m/s$ and its initial position is 12 m.