

HW answers....

just check your work by taking the derivative!

 Reverse Chain Rules Cot'd. $\cos(x)\cdot\sin^2(x)dx = \int \cos(x)\cdot\left[\frac{\sin(x)}{\cos(x)}\right]^2dx$ want: cos(x)

What to do when the reverse chain rule fails?

$$\int x \cdot \sqrt{2x-1} \cdot dx$$

$$\int x \cdot (2x-1)^{\frac{1}{2}} \cdot dx$$

note, u-sub can also solve any problem that the reverse chain rule can do.

Basic Premise

Shift from an 'x' problem to a 'u' problem, recalibrating the question

- 1. Assume new variable u is something based on x
- 2. Based on assumption, make 2 new deductions for x and dx
- 3. Rewrite original in terms of u and du, not x and dx

Solve the easier 'u' problem, then reshift back to the x variable

Bonus! $\sqrt{4x^2-3} \cdot x dx$ Require U-sub, but: ſχ. (4x²-3)'/2. du when using of in place of - solve for X.

$$\int \frac{3x}{4x-2} dx$$

$$\int \frac{3x}{4x-2} dx$$

$$\int \frac{3}{4x-2} dx$$

$$\int \frac{4x-2}{4x-2} dx$$

$$\int \frac{4x-2}{4x-2$$

$$\int \frac{3x}{\sqrt{4x+1}} dx$$
What's on Thursday's Test:
$$= \int 3x \cdot (4x+1)^{-1/2} dx$$
Basic Antiderivatives
Reverse Chain Rule
U-Substitution
$$\int \frac{3u}{4} + (u-1)^{-1/2} dx$$

$$= \int \frac{3u}{4} + \frac{3u}{$$

What's on Thursday's Test:

Basic Antiderivatives Reverse Chain Rule U-Substitution

