

Let's do #11, 12, and 26!!

26)
$$\begin{array}{ll}
26 \\
1 \\
3y^2 - 2x^2 \\
6yy' - 4x = 0 - (2y + 2x \cdot y') \\
6yy' - 4x = -2y - 2xy' \\
6yy' + 2xy' = -2y + 4x \\
y'(6y + 2x) = 4x - 2y \\
y'z = 4x - 2y \\
6y + 2x = 6(z) + 2(z) = 6$$

$$\begin{cases} f(g(x)) = x \\ f'(g(x)) \cdot g'(x) = 1 \\ g'(x) - \frac{1}{f'(g(x))} \\ g(z) - \frac{1}{f'(g(x))} - \frac{1}{f'(1)} \end{cases}$$

Work on it for the remainder of class plz

Already done? Let me know

Let
$$u=2x+1$$
 $du=2$
 $\int_{1}^{5} \sqrt{u} \frac{du}{dx} = 2$
 $\int_{1}^{5} \sqrt{u} \frac{du}{2} = dx$

Take some time to work on/check/compare the 2003 AP MC NC test passed out Monday

I will reveal the answers in a bit for you to check

colored pencils will be very useful today!!!!!!!!

Volume of Solids of Revolution (disk method and washer method)

What happens when you revolve a rectangle around an axis?

So a single rectangle becomes a cylindrical "disk"

What is its radius? What is its height/depth?

Volume of solid = sum of volume of slices

Axes of Revolution: x-axis

y-axis

other vertical + horizontal lines

Revolve about the y-axis

(1) draw rectangle adjacent to to (2) Mark the lengths of the restagle. (top-boxton) $V = \pi \int_{0}^{2} (3+x)^{2} - (1+x^{2}) \cdot dx$ #1,2,5,6,7