Good afternoon: warm up in notebooks: find each limit, if d.n.e. explain why

1.
$$\lim_{x\to 5} e^x = e^5$$

$$2. \lim_{y\to 2\pi}\sin(y)$$

$$\lim_{x \to 5} \frac{2x - 10}{x - 5}$$

4. Let
$$f(x) = \begin{cases} x, & \text{if } x < 3 \\ 7, & \text{if } x > 3 \\ 0, & \text{if } x = 3 \end{cases}$$

$$\lim_{x\to 3^+} f(x)$$

5.
$$\lim_{x\to \mathbf{Q}} 4 = \mathbf{Q}$$

Will need textbook for a little while today

First Quarter Learning Targets:

	AP Calculus A	B – 1st Quarter .	Assessment G	rades Name:				
	Key: F-L -	Limits of Functi	ons	F-B - Behavior	of Functions	F-C Ce	ontinuity	
	D-C Concept of the Derivative Most recent grade entered in PowerSchool. Each standard is							
	assessed at leas	assessed at least twice. Re-taking an assessment requires proof of completed homework.						
	Full state stand	Full state standards on web at: http://j.mp/tenncalc AP Course Description: http://bit.ly/apcalcccd						
M	F-L1a Simple I	Limits: I can calc	ulate limits a	lgebraically, inv	olving cancellati	on of terms or	related	
W	manipulations.							
	Date							
	Score							
	F-L1b: One Sid	led and Infinite	Limits: I can	calculate one-sid	led limits and lin	nits at and invo	olving infinity.	
	Date							
	Score							
			•					
	F-L1c: Advance	F-L1c: Advanced Limits: I can calculate limits involving special trig properties and rationalization.						
	Date	lo la						
	Score						7	
		1				1	1	
	F-L2a Graphs	and Tables: I can	n estimate lin	its of functions	(including one-s	ided limits) fro	m graphs or data.	
M	Date	1 200100. 1 000			(1	5- 6- april 51 autu.	
7	Score						-	
	Score							
	F D1. Assumpte	tas as Limits. L	can describe	ormptotic beha	rion (analytically	r and granhical	lr) in tarms of	
	<u>F-B1: Asymptotes as Limits:</u> I can describe asymptotic behavior (analytically and graphically) in terms of infinite limits and limits at infinity.							
			III.					
	infinite limits a	and minito de min	-					
	Date							

Self: _____ F-L1a: Evaluate each limit. Show all work. If a limit does not exist, show why.

Honor Pledge: I neither gave nor received assistance during this assessment. Initials: ____

Assessment: clear tables, no calculator for this one, only pencil and cover sheet

- put name on it, sign honor pledge
- use your cover sheet
- self assess out of 4, then turn it into basket (next to calculators)
- copy down the table on p.59 (theorem 1.2) into your notes, then try p67 #40

Properties of Limits

NOTES

THEOREM 1.2 Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the limits

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = K.$$

 $\lim_{x \to c} [bf(x)] = bL " factor" out a constant$ 1. Scalar multiple:

2. Sum or difference: $\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$ 3. Product: $\lim_{x \to c} [f(x)g(x)] = LK$ 4. Quotient: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}, \quad K \neq 0$

 $\lim_{x \to c} [f(x)]^n = L^n$ 5. Power:

40.

a. 3

b. 3/2

c. 729

d. 9

One-sided Limits, Infinity, and Asymptotes

A quick proof why $0.9999... \leq 1$

$$10 = 0.99999...$$
 $10N = 9.99999...$
 $10N = 9.999999...$
 $10N = 9 + 0.999999...$
 $10N = 9 + N$
 $-N = 9$
 $10N = 9$
 $10N = 9$
 $10N = 9$
 $10N = 9$

What is a vertical asymptote? What is a horizontal asymptote?

$$\lim_{x \to 2} \frac{x}{x - 2} = \frac{2}{D} \text{ II}$$
One sided limit:
$$\lim_{x \to 2} \frac{x}{x - 2} = \frac{2^{+}}{2^{+} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{-} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{-} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{-} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{-} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{-} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{-} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{-} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{-} - 2} = \frac{2^{+}}{D^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac{x}{x - 2} = \frac{2^{+}}{2^{+}} = \infty$$
And the sided limit:
$$\lim_{x \to 2^{+}} \frac$$

$$\lim_{x \to -1} \frac{-3}{x^2 + 2x + 1} = -\frac{3}{0}$$

$$\lim_{x \to -1} \frac{-3}{(x+1)^2} = -\frac{3}{(-1+1)^2} = -\frac{3}{0}$$

$$\lim_{x \to -3} \frac{3 - x}{x^2 - 9}$$

$$\begin{cases} \frac{1}{x^{-3}} & \frac{-1(x-3)}{(x-3)(x+3)} \Rightarrow \\ \frac{1}{x^{-3}} & \frac{1}{x^{-3}} & \frac{1}{x^{-3}} & \frac{1}{x^{-3}} \end{cases}$$

$$\frac{-1}{x+3}$$

$$\frac{1}{x^{2}3^{2}} - \frac{1}{x+3} = \frac{-1}{-3^{2}+3} = \frac{-1}{0^{2}}$$

$$\frac{1}{x+3} - \frac{1}{x+3} = \frac{-1}{3^{2}+3} = \frac{-1}{0^{2}}$$

$$\frac{1}{x+3} - \frac{1}{x+3} = \frac{-1}{0^{2}} = \frac{-1}{0^{2}}$$

Definition of Vertical Asymptote

a function f(x) has a Y.a.

X= c if any of the following are true:

$$f(x) = \pm \infty$$

$$X \rightarrow C^{-}$$

$$\lim_{X \rightarrow C^{+}} f(x) = f(x)$$

<u>Definition of Horizontal Asymptote</u>

A function f(x) has a H.A. Q y = d and for y = g if:

l-f(x)= d

 $\lim_{x \to -\infty} f(x) = g$

HW:

p. 88

#17-24

#33-40

notes, help videos at mcalc.weebly.com don't forget calcchat.com also!