Good afternoon: warm up in notebooks

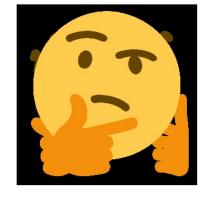
Find each limit. If it doesn't exist, show why.

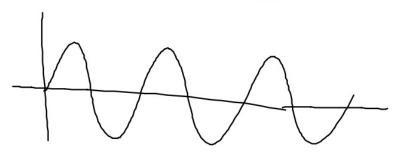
$$f(x) = \begin{cases} 4x, & x \neq 3 \\ \cos(x), & x = 3 \end{cases}$$

$$\lim_{x\to 3} f(x) = 12$$

$$f(x) = \begin{cases} 4x, & x < 1 \\ x^2 + 3, & x > 1 \\ x + 2, & x = 1 \end{cases}$$

$$\lim_{x \to 1^+} f(x) \neq 4$$


$$\lim_{x \to 1^+} f(x) \neq 4$$


Reminders: assessment during DS Wednesday (no calc) tutoring tomorrow 4-5p

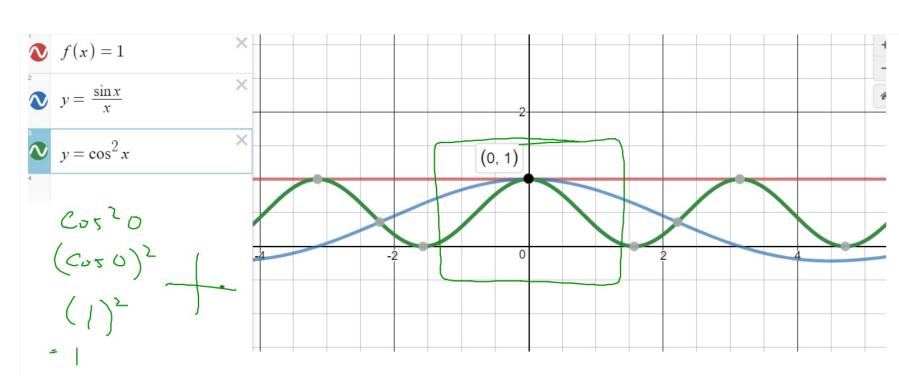
Senior lunch forms? have out on desk, will sign during class

НW	
Questions on practice assessment except for #2?	

$$\lim_{x\to\infty}\frac{\sin{(x)}}{e^x}=\frac{\approx -1+1}{e^\infty}=\frac{\text{Notes}}{6}$$

The Squeeze Theorem

Let *I* be an interval having the point *a* as a limit point. Let *f*, *g*, and *h* be functions defined on *I*, except possibly at *a* itself. Suppose that for every *x* in *I* not equal to *a*, we have:


$$g(x) \leq f(x) \leq h(x)$$

and also suppose that:

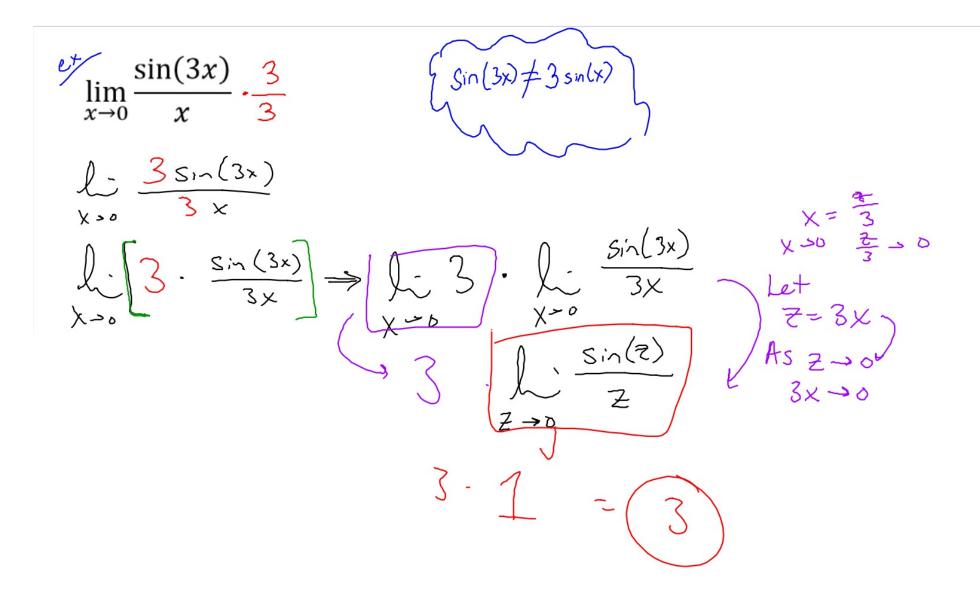
$$\lim_{x o a}g(x)=\lim_{x o a}h(x)=L.$$

Then
$$\lim_{x o a}f(x)=L.$$

Over
$$(-2,2)$$
 except for $x=0$:

$$\cos^{2}(x) \leq \frac{\sin(x)}{x} \leq 1$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} \leq \lim_{x \to 0} \frac{\sin(x)}{x} \leq \lim_{x \to 0} \frac{1}{x}$$


$$\lim_{x \to 0} \frac{\sin(x)}{x} \leq \lim_{x \to 0} \frac{1}{x}$$

Special Trig Limits (must memorize these)

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x\to 0}\frac{1-\cos\left(x\right)}{x}=0$$

(both are provable by the squeeze theorem)

Absolute Value Limits

Abs. Values

are

Piecewise in disguise!!!!

D Set absolute value

FO

1 +1

2 Solve. This is the "handoff."

3 Write a piecewise of hundoff

pt.

to be continued

HW: worksheet #1-18 (numerical answers at mcalc.weebly.com) study for non-calculator assessment (DS on Weds)

notes + videos website,tutoring tomorrow for help:)