

Graph of f

Graph of g

2017+ AP Sample Problems
No Calculator \#1-15
Yes Calculator \#16-20
2. $\lim _{x \rightarrow 0} \frac{7 x-\sin x}{x^{2}+\sin (3 x)}=$
(A) 6
(B) 2
(C) 1
(D) 0
(B) $\frac{\cos (\ln (2 x))}{x}$
(C) $\frac{\cos (\ln (2 x))}{2 x}$
(D) $\cos \left(\frac{1}{2 x}\right)$

1. The graphs of the functions f and g are shown above. The value of $\lim _{x \rightarrow 1} f(g(x))$ is
(A) 1
(B) 2
(C) 3
(D) nonexistent
2. If $f(x)=\sin (\ln (2 x))$, then $f^{\prime}(x)=$
(A) $\frac{\sin (\ln (2 x))}{2 x}$

3. Three graphs labeled I, II, and III are shown above. One is the graph of f, one is the graph of f^{\prime}, and one is the graph of $f^{\prime \prime}$. Which of the following correctly identifies each of the three graphs?

	f	f^{\prime}	$f^{\prime \prime}$
(A)	I	II	III
(B)	II	I	III
(C)	II	III	I
(D)	III	I	II

5. The local linear approximation to the function g at $x=\frac{1}{2}$ is $y=4 x+1$. What is the value of $g\left(\frac{1}{2}\right)+g^{\prime}\left(\frac{1}{2}\right)$?
(A) 4
(B) 5
(C) 6
(D) 7
6. For time $t \geq 0$, the velocity of a particle moving along the x-axis is given by $v(t)=(t-5)(t-2)^{2}$. At what values of t is the acceleration of the particle equal to 0 ?
(A) 2 only
(B) 4 only
(C) 2 and 4
(D) 2 and 5
7. The cost, in dollars, to shred the confidential documents of a company is modeled by C, a differentiable function of the weight of documents in pounds. Of the following, which is the best interpretation of $C^{\prime}(500)=80$?
(A) The cost to shred 500 pounds of documents is $\$ 80$.
(B) The average cost to shred documents is $\frac{80}{500}$ dollar per pound.
(C) Increasing the weight of documents by 500 pounds will increase the cost to shred the documents by approximately $\$ 80$.
(D) The cost to shred documents is increasing at a rate of $\$ 80$ per pound when the weight of the documents is 500 pounds.
8. Which of the following integral expressions is equal to $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\sqrt{1+\frac{3 k}{n} \cdot \frac{1}{n}}\right)$?
(A) $\int_{0}^{1} \sqrt{1+3 x} d x$
(B) $\int_{0}^{3} \sqrt{1+x} d x$
(C) $\int_{1}^{4} \sqrt{x} d x$
(D) $\frac{1}{3} \int_{0}^{3} \sqrt{x} d x$
9. $f(x)= \begin{cases}x & \text { for } x<2 \\ 3 & \text { for } x \geq 2\end{cases}$

If f is the function defined above, then $\int_{-1}^{4} f(x) d x$ is
(A) $\frac{9}{2}$
(B) $\frac{15}{2}$
(C) $\frac{17}{2}$
(D) undefined
10. $\int e^{x} \cos \left(e^{x}+1\right) d x=$
(A) $\sin \left(e^{x}+1\right)+C$
(B) $e^{x} \sin \left(e^{x}+1\right)+C$
(C) $e^{x} \sin \left(e^{x}+x\right)+C$
(D) $\frac{1}{2} \cos ^{2}\left(e^{x}+1\right)+C$
11. At time t, a population of bacteria grows at the rate of $5 e^{0.2 t}+4 t$ grams per day, where t is measured in days. By how many grams has the population grown from time $t=0$ days to $t=10$ days?
(A) $5 e^{2}+40$
(B) $5 e^{2}+195$
(C) $25 e^{2}+175$
(D) $25 e^{2}+375$

13. Which of the following is the solution to the differential equation $\frac{d y}{d x}=y \sec ^{2} x$ with the initial condition $y\left(\frac{\pi}{4}\right)=-1$?
(A) $y=-e^{\tan x}$
(B) $y=-e^{(-1+\tan x)}$
(C) $y=-e^{\left(\sec ^{3} x-2 \sqrt{2}\right) / 3}$
(D) $y=-\sqrt{2 \tan x-1}$
12. The right triangle shown in the figure above represents the boundary of a town that is bordered by a highway. The population density of the town at a distance of x miles from the highway is modeled by $D(x)=\sqrt{x+1}$, where $D(x)$ is measured in thousands of people per square mile. According to the model, which of the following expressions gives the total population, in thousands, of the town?
(A) $\int_{0}^{4} \sqrt{x+1} d x$
(B) $\int_{0}^{4} 8 \sqrt{x+1} d x$
(C) $\int_{0}^{4} x \sqrt{x+1} d x$
(D) $\int_{0}^{4}(4-x) \sqrt{x+1} d x$

15. | x | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $f(x)$ | 5 | 2 | -7 |
| $f^{\prime}(x)$ | -2 | -5 | -14 |

The table above gives selected values of a differentiable and decreasing function f and its derivative. If g is the inverse function of f, what is the value of $g^{\prime}(2)$?
(A) $-\frac{1}{5}$
(B) $-\frac{1}{14}$
(C) $\frac{1}{5}$
(D) 5
14. The graph of the function f is shown in the figure above. For how many values of x in the open interval $(-4,4)$ is f discontinuous?
(A) one
(B) two
(C) three
(D) four
16. The derivative of the function f is given by $f^{\prime}(x)=-\frac{x}{3}+\cos \left(x^{2}\right)$. At what values of x does f
have a relative minimum on the interval $0<x<3$?
(A) 1.094 and 2.608
(B) 1.798
(C) 2.372
(D) 2.493
17. The second derivative of a function g is given by $g^{\prime \prime}(x)=2^{-x^{2}}+\cos x+x$. For $-5<x<5$, on what open intervals is the graph of g concave up?
(A) $-5<x<-1.016$ only
(B) $-1.016<x<5$ only
(C) $0.463<x<2.100$ only
(D) $-5<x<0.463$ and $2.100<x<5$
18. The temperature, in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$). of water in a pond is modeled by the function H given by $H(t)=55-9 \cos \left(\frac{2 \pi}{365}(t+10)\right)$, where t is the number of days since January 1 $(t=0)$. What is the instantaneous rate of change of the temperature of the water at time $t=90$ days?
(A) $0.114^{\circ} \mathrm{F} /$ day
(B) $0.153^{\circ} \mathrm{F} /$ day
(C) $50.252^{\circ} \mathrm{F} /$ day
(D) $56.350^{\circ} \mathrm{F} /$ day
20. Let h be the function defined by $h(x)=\frac{1}{\sqrt{x^{5}+1}}$. If g is an antiderivative of h and $g(2)=3$, what is the value of $g(4)$?
(A) -0.020
(B) 0.152
(C) 3.031
(D) 3.152

