4.5 Some Riemann Sums

920. The table shows the velocity of a model train engine moving along a track for 10 seconds. Estimate the distance traveled by the engine using 10 subintervals of length 1 with a) left-hand values and b) right-hand values.

Time (seconds)	0	1	2	3	4	5	6	7	8	9	10
Velocity (in/sec)	0	12	22	10	5	13	11	6	2	6	0

921. The table shows the velocity of a vintage sports car accelerating from 0 to 142 miles per hour in 36 seconds (0.01 hours).

hours	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010
mph	0	40	62	82	96	108	116	125	132	137	142

a) Use a Riemann sum to estimate how far the car traveled during the 36 seconds it took to reach 142 mph .
b) Roughly how many seconds did it take the car to reach the halfway point? About how fast was the car going then?
922. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour, recorded in the following table.

Time (hours)	0	1	2	3	4	5	6	7	8
Leakage (gal./hour)	50	70	97	136	190	265	369	516	720

a) Give an upper and lower estimate of the total quantity of oil that has escaped after 5 hours.
b) Give an upper and lower estimate of the total quantity of oil that has escaped after 8 hours.
c) The tanker continues to leak $720 \mathrm{gal} / \mathrm{hr}$ after the first 8 hours. If the tanker originally contained 25,000 gallons of oil, approximately how many more hours will elapse in the worst case before all the oil has spilled? In the best case?
923. A rectangular swimming pool is 30 ft wide and 50 ft long. The table below shows the depth of the water at 5 ft intervals from one end of the pool to the other. Estimate the volume of water in the pool by computing the average of the left-hand and right-hand Riemann sums.

Position (ft)	0	5	10	15	20	25	30	35	40	45	50
Depth (ft)	6.0	8.2	9.1	9.9	10.5	11.0	11.5	11.9	12.3	12.7	13.0

