| Exam Review                        |                                                   |
|------------------------------------|---------------------------------------------------|
| Function                           | Derivative                                        |
| F(x)                               | Limit definition: $F'(X) = 0$ . $f'(X+h) - f'(X)$ |
|                                    | h-so h                                            |
| F(x) = c                           | O                                                 |
| F(x) = cx                          | C                                                 |
| $F(x) = cx^n$                      | $C \wedge \chi^{n-1}$                             |
| $F(x) = (G(x))^n$                  | n.(G(x))n.G(x) generalited power rule             |
| H(x) = F(x) + G(x)                 | F1(x) + G1(x)                                     |
| H(x) = F(x)*G(x)                   | figtfal Prod.                                     |
| H(x) = F(x)/G(x)                   | f'g-fg! Quotient rule                             |
| H(x) = F(G(x))                     | F'(F(X)). G(X) Chain                              |
| $F(x) = \sin(x); \cos(x); \tan(x)$ | COS(x); -S:n(x); Sec2(x)                          |
| $F(x) = \csc(x); \sec(x); \cot(x)$ | -(s(k)cot(x); Sec(x)tan(x); - (sc)(x)             |
| $H(x) = e^{(F(x))}$                | e +(m) + (k)                                      |
| $H(x) = \ln(F(x))$                 |                                                   |

1. Increasing:  $f'(x) \ge 0$ Decreasing:  $f'(x) \leq 0$ Concave up:  $f''(x) \ge 0$ Concave down:  $f''(x) \leq 0$ 

2.

Use the 4 terms above to describe each curve in two different ways:





4. Find dy/dx if  $y = x^3e^x$   $y' = e^x$   $y' = e^x$ 

of 
$$f(k) = 2(1-3x)^2 + \frac{2x}{4} \cdot 2(1-3x) \cdot \frac{3}{4}$$

5. Find the 
$$mx+b$$
 form of the line tangent to the graph of  $f(x) = 2x(1-3x)^2$  at the point  $(1, 8)$ 

$$f'(x) = 2x(1-3x)^2 + 2x \cdot 2(1-3x) \cdot 3$$

$$f'(x) = 2(1-3x)^2 + 2x \cdot 2(1-3x) \cdot 3$$

$$f'(x) = 2(1-3x)^2 - 12x(1-3x)$$

$$f'(x) = 2(1-3x)^{2} - 12x(1-3x)$$

$$f'(1) = 2(1-3)^{2} - 12(1)(1-3)$$

$$2(-2)^{2} - 12(-2)$$

$$3\cdot 4$$

$$f'(1) = 2 - 24 = 32$$

7. f'(3) for  $y = \sqrt{3x}$  is...

$$y' = \frac{1}{2\sqrt{3}x} \cdot 3 = \frac{3}{2\sqrt{3}x}$$

$$Q(x=3) \rightarrow 0$$

$$Q(x=3) \rightarrow 0$$

$$\frac{3}{2\sqrt{3}} - \frac{3}{2 \cdot 3} = \frac{3}{6} + \sqrt{2}$$

$$Ve|xi+y$$
 $=0 \Rightarrow V(t)=0$ 

8. A particle's position is given by  $x(t) = 2t^3-6t^2-18t-2$ . For  $t \ge 0$ , when is the particle at rest

$$\chi'(t) = v(t) = 6t^{2} - 12t - 18 = 0$$

$$6(t^{2} - 2t - 2) = 0$$

$$6(t - 3)(t + 1) = 0$$

$$t = 3, t = -1$$

9. If 
$$y = 2\sin(x/2)$$
, then  $\frac{d^2y}{dx^2} = \frac{1}{2} \sin(x/2)$ 

$$\frac{1}{2} = \frac{2 \cos(\frac{x}{2})}{2}$$

is: 
$$8 = F$$

See if 
$$f'$$
 is continuous.  
 $1 = 1 = 2$ 

$$1 = 2$$

dr = 02 (positive, ble increases)

dA = ? @ C = 2011

 $\frac{1}{24} = \pi \cdot 2r \frac{1}{4t}$   $\frac{1}{24} = 2 \cdot \pi \cdot 10 \cdot \frac{1}{10}$ 

undefined / continuous but not diff / diff but not continuous / neither continuous nor diff / both cont and diff ( 1m p.55: 64

11.
$$\lim_{h \to 0} \frac{\sin 3(x+h) - \sin(3x)}{h} = \frac{1}{h}$$

$$-\int (x) = \frac{3\cos(3x)}{3\cos(3x)}$$

12. If 
$$\lim_{x\to 2} f(x) = 8$$
, then which of the following must be true:  
I. f is continuous at  $x = 2 \rightarrow N_0$ , bridge could be elsewhere.

14. 
$$\lim_{x \to 0} \frac{\sin(2x)}{2x} = \int_{a \to \infty} \frac{\sin(2x)}{a \cdot x} = 1$$

## 15. The radius of a circle is increasing at a constant rate of 0.2 meters per second. What is the rate of increase in the area of the circle at the instant when the circumference of the circle is $20\pi$ meters?

a. 
$$0.04\pi \text{ m}^2/\text{sec}$$
 b.  $0.4\pi \text{ m}^2/\text{sec}$  c.  $4\pi \text{ m}^2/\text{sec}$  d)  $20\pi \text{ m}^2/\text{sec}$  e.  $100\pi \text{ m}^2/\text{sec}$ 

## **Yes Calculator**

Yes Calculator

16. If f is continuous, and 
$$f(x) = \frac{x^2 - 25}{x - 5}$$
 for all  $x \neq 5$ , then  $f(5) = 0/1/2/5/10$ 

$$f(x) = \frac{(x + 5)(x - 5)}{(x + 5)(x - 5)} = x + 5 \quad f(x) = x + 5$$

18. You are given a derivative function. How do you find the number of critical values on the interval (0,5)?

Put f (x) in to (x, in calculator Adjust x-values of window to 
$$\approx (0,5)$$
. I suggest [-1,6].

Critical numbers:  $f'=0$  or underval. Count X-intercepts



22. Let  $f(x) = \sqrt{x}$ . If the rate of change of f at x = c is four times the rate of change at x = 1, then c=  $f(x) = \frac{1}{\sqrt{x}}$   $f'(x) = \frac{1}{\sqrt{x}}$  f'(

23. The top of a 36 foot ladder is sliding down a vertical wall at a constant rate of 5 ft per minute. When the top of the ladder is 8 feet from the ground, what is the rate of change in feet per minute of the distance between the



bottom of the ladder and the wall?  $\frac{dy}{dt} = -5 \quad (\text{nogotive ble down})$   $\frac{dy}{dt} = 36$   $\frac{dx}{dt} = ? \quad e^{t} = 80$ 24. Find the value of c that satisfies the conclusion of the Mean Value Theorem for the function  $f(x) = x^2 - 2x + 3$  on the integral [1, 2]. As the support [1, 2] and [1, 2] are the integral [1, 2] and [1, 2] and [1, 2] are the integral [1, 2] and [1, 2] and [1, 2] are the integral [1, 2] are the integral [1, 2] and [1, 2] are the integral [1, 2] are the integral [1, 2] and [1, 2] are the integral [1, 2] are the integral [1, 2] and [1, 2] are the integral [1, 2] are the integral [1, 2] are the integral [1, 2] and [1, 2] ar

Aug. 
$$\frac{f(3)-f(1)}{3-1} = \frac{6-2}{2} = \frac{4}{3} = \frac{1}{2} = \frac{1}{2}$$

24. Find the value of 
$$c$$
 that satisfies the conclusion of the Mean Value Theorem for the further interval [1, 3]. Mult: Aug = Instant  $f'(x) = 2x - 2$ 

Aug =  $\frac{f'(3) - f(1)}{3 - 1} = \frac{6 - 2}{2} = \frac{4}{2} = \frac{2}{2} = 2x - 2$ 

25. The function  $f(x) = \begin{cases} x^2 - 2x + 1, x \le 2 \\ ax + b, & x > 2 \end{cases}$  is differentiable everywhere. Find  $a$  and  $b$ .

Continuous  $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$  implies Continuous  $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$ 
 $f'(x) = \begin{cases} 2x - 2, & x = 2 \end{cases}$