(AP)
Exam Review

NO CALC: $f^{\prime}=3$
3. fo $g^{\circ}=d y / d x$

If $x^{2}+3 x y-y^{2}=2$, then find $d y / d x$.

$$
\begin{aligned}
& \text { If } x^{2}+3 x y-y^{2}=2 \text {, then find dy/dx. } \\
& \frac{2 x+3 y+3 x \frac{d y}{d x}-2 y \frac{d y}{d x}=0}{\frac{d y}{d x}(3 x-2 y)}=-2 x-3 y
\end{aligned} \quad \frac{d y}{d x}=\frac{-2 x-3 y}{3 x-2 y}
$$

4.

Find dy/dx if $y=f^{3} \mathrm{e}^{g} \quad \begin{aligned} & f^{\prime}=3 x^{2} \\ & g^{\prime}=e^{x}\end{aligned}$

$$
3 x^{2} e^{x}+x^{3} e^{x} \underset{\text { factor }}{\longrightarrow} x^{2} e^{x}(3+x)
$$

5. Find the $m x+b$ form of the line tangent to the graph of $f(x)=2 x(1-3 x)^{2}$ at the point $(1,8)$

$$
\begin{aligned}
& f^{\prime}(x)=2(1-3 x)^{2}+\frac{2 x \cdot 2(1-3 x)^{\prime} \cdot-3}{t} \quad y-8=32(x-1) \\
& f^{\prime}(x)=2(1-3 x)^{2}-12 x(1-3 x) \quad \Rightarrow \quad y-8=32 x-32 \\
& f^{\prime}(1)=2\left(\frac{1-3)^{2}}{\left.(-2)^{2}\right)}-12(1)(1-3)\right. \\
& \begin{array}{l}
\left.2(-2)^{2}\right)-12(-2) \\
2.4
\end{array} \\
& \left.f^{\prime} / 1\right)=8--24=32 \\
& y=32 x-24
\end{aligned}
$$

6. If $f(x)=\cos (x)$, then $f^{\prime}(\pi / 6)=$ sine
7. $\mathrm{f}^{\prime}(3)$ for $\mathrm{y}=\sqrt{3 x}$ is...

$$
\begin{aligned}
& y=(3 x)^{1 / 2} \\
& y^{\prime}=\frac{1}{2(3 x)^{-1 / 2}} \cdot 3 \\
& y^{\prime} \frac{1}{2 \sqrt{3 x}} \cdot 3=\frac{3}{2 \sqrt{3 x}} \\
& e x=3 \longrightarrow \frac{3}{2 \cdot \sqrt{3 \cdot 3}}=\frac{3}{2 \cdot 3}=\frac{3}{6}=-1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Velocity } \\
& =0 \Rightarrow v(t)=0
\end{aligned}
$$

8. A particle's position is given by $x(t)=2 t^{3}-6 t^{2}-18 t-2$. For $t \geq 0$, when is the particle at rests
$X^{\prime}(t)=v(t)=6 t^{2}-12 t-18=0$

$$
\begin{gathered}
6\left(t^{2}-2 t-3\right)=0 \\
6(t-3)(t+1)=0 \\
t=3, t=-1
\end{gathered}
$$

9. $\frac{\mathrm{I} \mid \mathrm{f} y}{d x}=\frac{d}{d x} \sin (\mathrm{x} / 2)$, then $\frac{d^{2} y}{d x^{2}}=$
$\frac{d y}{d x}=2 \cos \left(\frac{x}{2}\right) \cdot \frac{x}{2}$

$$
\begin{aligned}
& \begin{array}{c}
\text { See if } f^{\prime} \text { is } \\
\text { continuous. }
\end{array} \\
& f^{\prime}(x)= \begin{cases}3 x^{2}, x<2 & 3 \cdot x_{4}^{2}=2 \\
2, x>2 & 12=2\end{cases} \\
& \text { left Rife }
\end{aligned}
$$

$\frac{d}{d x} \frac{d y}{\frac{d}{d 2 y}}=\frac{1}{d x}\left(\cos \left(\frac{x}{2}\right)\right)$
$\frac{d}{d x} \frac{d}{d}$

10. At $x=2, \frac{1}{2} \sin \left(\frac{x}{2}\right)$
. At $\mathrm{x}=2$, the function given by $f(x)=\left\{\begin{array}{l}3 x+4, x>2\end{array}\right.$

undefined / continuous but not diff diff but not continuous / neither continuous nor diff / both cont and diff
11.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sin 3(x+h)-\sin (3 x)}{h} & = \\
f(x) & =\sin (3 x) \\
f(x) & =3 \cos (3 x)
\end{aligned}
$$

12. If $\lim _{x \rightarrow 2} f(x)=8$, then which of the following must be true:

$$
\left.\frac{d r}{d c}=0.2 \quad \begin{array}{c}
\text { positive, bc } \\
\text { increasiog }
\end{array}\right)
$$

None / II only / III only / I and III only / I, II, and III
13. Write a rational function that has $\mathrm{y}=0$ as an asymptote.

I.f is continuous at $x=2 \rightarrow$ No, bridge could be elsewhere.
II. is differentiable at $x=2 \rightarrow$ Not necessarily continuous, so diff is
III. $f(2)=8 \rightarrow$ Bridenewn? could III. $\mathrm{f}(2)=8 \rightarrow$ Bride Cull elsewhere.

(HT)
14. $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}=$ so $\ell_{2 x \rightarrow 0} \frac{\sin (2 x)}{2 x}=1$

15. The radius of a circle is increasing at a constant rate of 0.2 meters per second. What is the rate of increase in the area of the circle at the instant when the circumference of the circle is 20π meters?
a. $\quad 0.04 \pi \mathrm{~m}^{2} / \mathrm{sec}$
b. $0.4 \pi \mathrm{~m}^{2} / \mathrm{sec}$
c. $4 \pi \mathrm{~m}^{2} / \mathrm{sec}$
d. $20 \pi \mathrm{~m}^{2} / \mathrm{sec}$
e. $100 \pi \mathrm{~m}^{2} / \mathrm{sec}$

Yes Calculator

16. If f is continuous, and $\mathrm{f}(\mathrm{x})=\frac{x^{2}-25}{x-5}$ for all $\mathrm{x} \neq 5$, then $\mathrm{f}(5)=$

$$
\left.\begin{array}{ll}
0 / 1 / 2 / 5 / 10 & f(x)=\frac{x-5}{(x+5)(x-5)} \\
x-5
\end{array}=x+5\right\} \begin{aligned}
& f(x)=x+5 \\
& f(5)=5+5=10
\end{aligned}
$$

17. Let f and g be two differentiable functions. Describe how you would find the x-value where they have parallel tangent lines. (Calculator active) find $f^{\prime}(x)$ and $g^{\prime}(x)$.
put them in Calculator, Y_{1} and Y_{2}. Find pt of intersection. 2n-1) +rale
18. You are given a derivative function. How do you find the number of critical values on the interval $(0,5)$?
put $f(x)$ into Y_{1} in calculator. Adjust x-values of winder to $\approx(0,5)$. I rugger $[-1, b]$.
Critical numbers: $f^{\prime \prime}=0$ ord. Count x-intercepts
19. Sketch a graph below where f is continuous at $x=c,(c, f(c))$ is an absolute minimum, but f is not differentiable at $\mathrm{x}=\mathrm{c}$.

20. Find the equation of a line tangent to $f(x)=2 x^{4}-3 x^{2}+4 x$ at the point where $f^{\prime}(x)=1$.

$$
f^{\prime}(x)=8 x^{3}-6 x+4=1
$$

$$
\begin{array}{ll}
8 x^{3}-6 x+4=1 \\
8 x^{3}-6 x+3=0
\end{array} \quad \begin{aligned}
& x=-1.05 \\
& \text { use calculator: Graph find zines. } y=f(-1.05)=2(-1.05)^{4}-3(1.05)^{2}+4(1.05) \simeq 3.323
\end{aligned}, \begin{aligned}
& y-3.323=1(x-1.05) \\
& y=x-1.05+3.23
\end{aligned}
$$

21. $f^{\prime}(x)=2 e^{x}-12 x$. Where does f have a relative minimum?

$$
\begin{aligned}
& \text { Graph } f^{\prime} \text { in } Y_{1} \text { in calculator. } \\
& \quad f_{\text {ind }} \text { where } f^{\prime} \text { crosses x-axis from neg } \rightarrow \text { pos like this }
\end{aligned}
$$

22. Let $\mathrm{f}(\mathrm{x})=\sqrt{x}$. If the rate of change of f at $\mathrm{x}=\mathrm{c}$ is four times the rate of change at $\mathrm{x}=1$, then $\mathrm{c}=$
23. The top of a 36 foot ladder is sliding down a vertical wall at a constant rate of 5 ft per minute. When the top of the ladder is 8 feet from the ground, what is the rate of change in feet per minute of the distance between the bottom of the ladder and the wall?

24. Find the value of c that satisfies the conclusion of the Mean Value Theorem for the function $f(x)=x^{2}-2 x+3$ on the interval $[1,3]$. Mut: Avg $=$ Instant $f^{\prime}(x)=2 x-2$
Avg: $\frac{f(3)-f(1)}{3-1}=\frac{6-2}{2}=\frac{4}{2}=\frac{2}{\frac{+1}{4}=2 x-2}+\frac{+2}{2 x} \quad x=2 \quad c=2, t[1,3]$
25. The function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}x^{2}-2 x+1, & x \leq 2 \\ a x+b, & x>2\end{array}\right.$ is differentiable everywhere. Find a and b.

Continuous $\quad f^{\prime}(x)=\left\{\begin{array}{c}x>2 \\ 2 x-2, x<2\end{array}\right.$

$$
\begin{array}{ll}
\text { left }=\text { Right } & f^{\prime}(x)= \begin{cases}2 x-2, x<2 \\
2^{2}-2 \cdot 2+1=2 a+b & \text { assume } \\
a, x>2\end{cases} \\
f^{\prime} \text { cont; left }=\text { rig }
\end{array}
$$

$1=2 a+b \quad$ assume $\quad f^{\prime}$ cont: 1 eft = right
$\begin{array}{lll} & & 2(2)-2=a \\ 4-2=a \\ 1=2(2)+b & 2 & =a \\ 1=4+b \\ b=-3\end{array} \quad \begin{array}{ll}a=2 \\ b \div-3 & \\ & \end{array}$

