Honors Calculus Semester 1 Exam Review: 30 questions, multiple choice, calculators allowed
TEXTBOOK SOLUTIONS WITH STEPS: www.calcchat.com/book/Calculus-7e/

Limits and Continuity 45\%

- Given a graph of a function, be able to determine its limits (one-sided and two-sided).

$$
\text { - p. 55: } \# 9-18 \text { See what } y \text {-value the the has around the incited } x \text {-value }
$$

- Determine the limits of a piecewise function (including absolute value functions)
。

$$
\begin{aligned}
& f(x)=\frac{3 x+9}{|x+3|} ; \lim _{x \rightarrow-3^{+}} f(x) ; \text { (answer: 3) }\left\{\begin{array} { l }
{ \frac { 3 (x + 3) } { 3 (x) 3) } , x \geq - 3 } \\
{ \frac { 3 (x) } { - (x + 1) } , x < - 3 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
3 & x \geq-3 \\
-3 & x<-3
\end{array}\right.\right. \\
& g(x)=\left\{\begin{array}{l}
x^{2}+2, x \neq 0 ; \lim _{x \rightarrow-3} g(x) ;(\text { answer: } 2)
\end{array}\right.
\end{aligned}
$$

Incomprehensible
math ching

$$
g(x)=\left\{\begin{array}{c}
x^{2}+2, x \neq 0 \\
0, x=0
\end{array} ; \lim _{x \rightarrow 0} g(x) ;(\text { answer: } 2 \text {) }\right.
$$

Find limits of functions analytically:
$\int \circ$ Using properties of limits: p. 65: $37-40 \rightarrow$ Common sense

- By direct substitution: p. 65:15-22 \rightarrow plug it in, hopefully no division by 0 .
- By factoring: p.66: 45-52 \rightarrow factor, cancel, then ploy in.
- By rationalization: p.66: $53-56 \rightarrow$ see p. 3 for example
- Of special trig limits: p. 66: 67-70 $\rightarrow \lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Determine the continuity of a function: (limit from the left $=$ function at point $=$ limit from right)

$$
f(x)=\left\{\begin{array}{ll}
x^{2}+2 x, & \text { if } x \leq-2 \\
x^{3}-6 x, & \text { if } x>-2
\end{array} \text { fee pg. } 3 \text { for worK. } \quad \text { (answer :discontinuity at } x=-2 \text { because } 0=0 \neq 4\right. \text {) }
$$

- Find and classify discontinuities of functions: jump (left limit \neq right limit), removable (limit exists, but does not equal function), infinite (one or both of the left/right limits approaches infinity; v. asymptote)

$$
\text { - p. 77: 37-47 (except } 43 \& 44 \text {) }
$$

- Given a function, be able to find its limit that results in infinity (vertical asymptote)
- $f(x)=\frac{-2}{x+5} ; \lim _{x \rightarrow-5^{+}} f(x)$
(answer: $-\infty$) See pg 3 .
- Given a function, find its limits at infinity. (Horizontal asymptotes)
- Same degrees: H.A. is y $=$ (ratio of leading coefficients)
- Numerator degree is higher: no H.A.; or, $\lim =\infty$
- Denominator degree is higher: H.A. is $\mathrm{y}=0$
- p. 199: 19-26
- Find the value of c that will make a function continuous:

$$
\text { - } p(x)=\left\{\begin{array}{l}
3 x^{2}-2, \text { if } x \leq 4 \\
4 c x-2, \text { if } x>4
\end{array} \quad \text { (answer: } c=3 \text {) fee } p g .4\right.
$$

Differentiation: Derivatives, Tangent Lines, and Differentiability: 55\%

- Use derivative rules to find derivatives of functions:

Function	Derivative
$F(x)$	Limit definition: $F^{\prime}(X)=2$ $\lim _{n \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$F(x)=c$	0
$F(x)=c x$	C
$F(x)=c x^{n}$	$C \cap x^{n-1}$
$F(x)=(G(x))^{n}$	$h \cdot(G(x))^{n-1} \cdot G^{\prime}(x)$
$H(x)=F(x)+G(x)$	$F^{\prime}(x)+G^{\prime}(x)$
$H(x)=F(x)^{*} G(x)$	$F^{\prime} G+F G^{\prime}$
$H(x)=F(x) / G(x)$	$\frac{F^{\prime} G-F G^{\prime}}{G^{2}}$

$H(x)=F(G(x))$	$F^{\prime}(G(x)) \cdot G^{\prime}(x)$
$F(x)=\sin (x) ; \cos (x) ; \tan (x)$	$\cos (x) ;-\sin (x) ; \sec ^{2}(x)$
$F(x)=\csc (x) ; \sec (x) ; \cot (x)$	$-\csc (x) \cdot \cot (x) ; \sec (x) \tan (x) ;-\csc ^{2}(x)$
$H(x)=e^{\wedge}(F(x))$	$e^{f(x)} \cdot f^{\prime}(x)$
$H(x)=\ln (F(x)) \quad$	

- - Practice with above rules: p. 113: 39-52
$\frac{1}{f(x)} \cdot f^{\prime}(x)$ - Use the limit definition of derivative to find the derivative of a function.
- $\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-3(x+h)+7-5 x^{2}+3 x-7}{h}-\left(5 x^{2}-3 x+7\right) \xrightarrow{\left.\text { (answer: } 10 x^{2}-3\right)}$ power rule
- Given a table of values, find the indicated derivative (using the power rule, product rule, quotient rule, and or chain rule) (answers \downarrow)

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	-1	2	2
2	2	-1	4	0
3	1	$\frac{1}{2}$	2	$-\frac{3}{2}$
4	3	2	1	-1

Part 1) Given $h_{1}(x)=f(x) \cdot g(x)$, find $h_{1}^{\prime}(2)$
Part 2) Given $h_{2}(x)=\frac{f(x)}{g(x)}$, find $h_{2}^{\prime}(4) \quad$ see $4 . \quad \begin{aligned} & h_{1}^{\prime \prime}(2)=-4 \\ & h_{2}^{\prime}(4)=5\end{aligned}$
Part 3) Given $h_{3}(x)=(f(x))^{2}$, find $h_{3}^{\prime}(1)$
$h_{2}^{\prime}(4)=5$
$h^{\prime}(1)=-6$
Part 4) Given $h_{4}(x)=f(g(x))$, find $h_{4}{ }^{\prime}(3)$
$h_{4}^{\prime}(3)=\frac{3}{2}$

- Procedure: Use appropriate rule to find $h^{\prime}(\mathrm{x})$ in terms of $\mathrm{f}, \mathrm{g}, \mathrm{f}^{\prime}$, and g^{\prime}. Plug in the given x value into your functions/derivatives. Use the table to find what these are.
- Use the product and quotient rules to find derivatives (possibly involving trigonometric functions)
- Procedure: Specify F and G. Find F' and G'. Plug in these 4 bits into the appropriate formula. Simplify.
- p. 124: 1-12; 39-45

Use the chain rule to find derivatives (possibly involving trigonometric functions)

- Procedure: Derivative of outside function (keeping inside as is), times the derivative of inside.
- p. 133: 7-16
- Use implicit differentiation to find $d y / d x$ of a given function. Then, find the slope at a specified point.
See ph 6 Procedure: Use derivative as operator to both sides of function. Every term with x as only variable are done as usual.
- Terms with a y in it require the chain rule, meaning dy/dx is multiplied to what the derivative of the y term gives you.
- Use algebra to isolate and solve for dy/dx. Then plug in the (x, y) value of the point into this, and this is the slope of the curve.
- P. 142: 21-28
- Find the equation of the tangent line of a function at a specified x-value.
- Procedure: Plug in given x into given function, find y. This is your $\left(x_{1}, y_{1}\right)$.
- Find the derivative of the given function. Plug in the given x into this derivative. This value is your m.
- Plug in ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and m into $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
- P. 114: 53-56. (Note: these problems give you the y-value. Pretend you don't have it when working on them).
See - Find the slope of the line tangent to the function at a specified x-value.
- Procedure: Very easy. Just take the derivative, and plug the given x-value into it. This is your answer.

Rationalization

$$
\begin{aligned}
& \left.\lim _{x \rightarrow 4} \frac{x-4}{(\sqrt{x+5}-3)} \cdot \frac{\sqrt{x+5}+3}{(\sqrt{x+5}+3)} \Rightarrow \frac{(x-4)(\sqrt{x+5}+3)}{x+5-9}=\frac{(x-4)(\sqrt{x+5}+3)}{x-4}\right) \\
& \text { other part. } \\
& \text { plug in } \\
& \sqrt{4+5}+3 \\
& \sqrt{9}+3 \\
& 3+3=\text { (6) }
\end{aligned}
$$

Continuity.

$$
f= \begin{cases}x^{2}+2 x, & x=-2 \\ x^{3}-6 x, & x>-2\end{cases}
$$

Easy method? Plug -2 into both equations.
$\sqrt{-2^{-}} \quad$ this is to see if $\operatorname{lin}_{x \rightarrow-2^{-}} f(x)=\sum_{x \rightarrow-2^{+}} f(x)$

$$
\begin{array}{cl}
(-2)^{2}+2(-2) & (-2)^{3}-6(\\
4-4 & -8+12
\end{array}
$$

$0 \neq 4$, Jump Discontinuity..
Th-finity? $0 \cdot \frac{-2}{(x+5)^{2}}$-Plu gin? Divide by σ II

$$
\begin{aligned}
& \lim _{x \rightarrow-5^{+}} \frac{-2}{(x+5)^{2}} \text { - Plug in? Dan't factor... } \\
& \text {-Plug " }-5^{+} \approx-4.999 \\
& \frac{-2}{(-4.999+5)^{2}}=\frac{-2}{(0.004)^{2}}=\frac{-2}{\substack{0.0011 \\
\frac{n 94}{p .5}}}=-\infty
\end{aligned}
$$

Make a function continuous.

$$
p(x)= \begin{cases}3 x^{2}-2, & x \leq 4 \\ 4 c x-2, & x>4\end{cases}
$$

Easy Method? Plug in 4 in both functions. Only ploy it in for X. "C'stays put. Set equal and Solve.

$$
\begin{aligned}
3(4)^{2}-2 & =4 c \cdot 4-2 \\
3 \cdot 16-2 & =16 c-2 \\
48-2 & =16 c-2 \\
46 & =16 c-2 \\
\frac{+1}{\frac{48}{16}} & =\frac{16 c}{16} \Rightarrow c=3
\end{aligned}
$$

Tables

$$
\begin{aligned}
& \begin{array}{l}
\text { (1) } h=f \cdot g \\
h^{\prime}=f^{\prime} g+f g^{\prime} \\
\downarrow^{\prime} \quad \downarrow \quad\binom{\text { Product }}{\text { rule }}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -1 \cdot 4+2 \cdot 8 \\
& -4+0=-4
\end{aligned}
$$

(3) $h(k)=(f(x))^{2}$ power rue/chain rule

$$
\begin{aligned}
& h^{\prime}(x)=2(f(x))^{\prime} \cdot f^{\prime}(x)^{e} \\
& h^{\prime}(1)=\underset{\text { ruse table) }}{2(f(1)) \cdot f^{\prime}(1)}
\end{aligned}
$$

$$
2 \cdot 3 \cdot-1=-6
$$

$$
\left(\begin{array}{rl}
4 & h(x)=f(g(x)) \\
h^{\prime}(x)= & f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
h^{\prime}(3)= & f^{\prime}(g(3)) \cdot g^{\prime}(3) \\
h^{\prime}(3)= & =f^{\prime \prime}(2) \cdot-\frac{3}{2} \\
& -1 \cdot-\frac{3}{2}=\frac{3}{2}
\end{array}\right.
$$

these are Chain rule problems.

CHAIN RULE

$$
y=\sqrt{\cos (2 x)}
$$

$$
\begin{aligned}
& \text { Rewrite } \\
& y=(\cos (2 x))^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { outside } \\
& \frac{d y}{d x}=\frac{1}{2}(\cos (2 x) \underbrace{\text { outside }}_{\text {chain }} \cdot-\sin (\underbrace{2 x) \cdot 2}_{\text {chain }} \\
& \frac{1}{2(\cos (2 x))^{1 / 2}} \cdots-2 \sin (2 x) \\
& \frac{-\not \partial \sin (2 x)}{\not 2 \sqrt{\cos (2 x)}}=\frac{-\sin (2 x)}{\sqrt{\cos (2 x)}}
\end{aligned}
$$

Implicit Diff

$$
\begin{aligned}
& \text { Find } \frac{d y}{d x} \text {. } \\
& x^{x^{3}-y^{3}}=\frac{f}{d}=\begin{array}{l}
f x y \\
f^{\prime}=3 \\
g^{\prime}=1 \cdot \frac{d y}{d x}=\frac{d y}{d x}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -3 y^{2} \frac{d y}{d x}-3 x \frac{d y}{d x}=3 y-3 x^{2} \\
& \text { factor out } \\
& d y / 3 x \text {. } \\
& \frac{\frac{d y}{d x}\left(-3 y^{2}-3 x\right)}{\left(-3 y^{2}-3 x\right)}=\frac{3 y-3 x^{2}}{-3 y^{2}-3 x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x^{2}-y}{x+y^{2}}
\end{aligned}
$$

angent live
Find the equation of the line tangent to $y=\sin (2 x)$ at $x=\pi / 4$.

$$
\text { 米 } y-y_{1}-m\left(x-x_{1}\right)
$$

Point

$$
\begin{array}{r}
y=\sin (2 \cdot \pi / 4)=\sin \left(\frac{\pi}{2}\right)=1 \\
(\pi / 4,1)(x, 4 \pi)
\end{array}
$$

Slope

$$
\begin{array}{rlrl}
\frac{d y}{d x} & =2 \cos (2 x) & & y-y_{1}=m\left(x-x_{1}\right) \\
p / 4 g \text { in } x=\pi / 4 & & y-1=0\left(x-\frac{\pi}{4}\right) \\
\frac{d y}{d x} & =2 \cos (2 \cdot \pi / 4) & & y-1=0 \\
& =2 \cos (\pi / 2) & & y=1 \\
& =0
\end{array}
$$

Slope
(1) find $f^{\prime}(4)$

$$
\begin{align*}
& \text { if } f(x)=x^{2}+3 x-1 \\
& f^{\prime}(x)=2 x+3 \\
& f^{\prime}(4)=2 \cdot 4+3=8+3=11 \tag{11}
\end{align*}
$$

(2)

$$
\begin{array}{rlr}
f^{\prime}(5) \text { if } f(x) & =-3 x-7 \\
f^{\prime}(x) & =-3 \\
f^{\prime}(5) & =-3 \ldots 50 \ldots-3 \quad \begin{array}{l}
\text { makes sense!! } \\
\text { slow of } f \text { is }
\end{array} \\
\text { always }-3 .
\end{array}
$$

