<u>Honors Calculus Semester 1 Exam Review</u>: 30 questions, multiple choice, calculators allowed TEXTBOOK SOLUTIONS WITH STEPS: <u>www.calcchat.com/book/Calculus-7e/</u>

Limits and Continuity 45%

0

- Given a graph of a function, be able to determine its limits (one-sided and two-sided).
 p. 55: #9-18 See what y-value the indicated X-value
- Determine the limits of a piecewise function (including absolute value functions)

Incomprehensib math chand

> Find limits of functions analytically: O Using properties of limits: p. 65: 37-40- Combuse Sense

- O By direct substitution: p. 65: 15-22-> plug it in, herefully no division by 6.
- o By factoring: p.66: 45-52 → factor, cancel, then ploy in.
- o By rationalization: p.66: 53-56→ fer p. 3 for example
- Of special trig limits: p. 66: 67-70 $\rightarrow \lim_{x \to \infty} \frac{\sin x}{x} = 1$.

Determine the continuity of a function: (limit from the left = function at point = limit from right)

 $f(x) = egin{cases} x^2+2x, & ext{if } x \leq -2 \ x^3-6x, & ext{if } x > -2 \end{cases}$ for work.

(answer: discontinuity at x = -2 because $0 = 0 \neq 4$)

Find and classify discontinuities of functions: jump (left limit \neq right limit), removable (limit exists, but does not equal function), *infinite* (one or both of the left/right limits approaches infinity; v. asymptote)

o p. 77: 37-47 (except 43 & 44)

Given a function, be able to find its limit that results in infinity (vertical asymptote)

•
$$f(x) = \frac{-2}{x+5}; \lim_{x \to -5^+} f(x)$$
 (answer: $-\infty$) for ρ_2

- Given a function, find its limits *at* infinity. (Horizontal asymptotes)
 - \circ Same degrees: H.A. is y = (ratio of leading coefficients)
 - Numerator degree is higher: no H.A.; or, $\lim = \infty$
 - o Denominator degree is higher: H.A. is y = 0

o p. 199: 19-26

- Find the value of c that will make a function continuous:

$$p(x) = \begin{cases} 3x^2 - 2, & \text{if } x \le 4 \\ 4cx - 2, & \text{if } x > 4 \end{cases}$$
 (answer: c = 3) for all the second second

Differentiation: Derivatives, Tangent Lines, and Differentiability: 55%

Use	derivative	rules t	o f	find	derivatives	of	functions:
000	aonvauvo	I UICD U	U	uuu	0011/001/00	O1	ranconomo.

Function	Derivative
F(x)	Limit definition: $F'(X) = 2$
	$ \begin{array}{c} f(x + h) - f(x) \\ h \rightarrow \delta \\ h \end{array} $
F(x) = c	0
F(x) = cx	C
$F(x) = cx^n$	$C \cap K^{n-1}$
$F(x) = (G(x))^n$	$n \cdot (f(\kappa))^{n-1} \cdot f'(\kappa)$
H(x) = F(x) + G(x)	F'(k) + G'(k)
$H(x) = F(x)^*G(x)$	F'G + FG'
H(x) = F(x)/G(x)	F'G-FG'
	Gi

- Practice with above rules: p. 113: 39-52

Use the <u>limit definition</u> of derivative to find the derivative of a function.

 $\lim_{h \to 0} \frac{5(x+h)^2 - 3(x+h) + 7 - 5x^2 + 3x - 7}{h} (answer: 10x - 3) \text{ power rule}$

Given a table of values, find the indicated derivative (using the power rule, product rule, quotient rule, and or chain rule) $(answers \downarrow)$

x	f(x)	f'(x)	g(x)	g'(x)	Part 1) Given $h_1(x) = f(x) \cdot g(x)$, find $h_1'(2)$	See	<i>(</i>)
1	3	-1	2	2	Part 2) Given $h(x) = \frac{f(x)}{x}$ find $h'(4)$	a U	$h_1'(2) = -4$
2	2	-1	4	0	Part 2) Given $n_2(x) = \frac{1}{g(x)}$, rind $n_2(4)$	rg 1.	$h_{2}'(4) = 5$
3	1	1	2	_3	Part 3) Given $h_{3}(x) = (f(x))^{2}$, find $h_{3}'(1)$		$h_{3}'(1) = -6$
	•	2	2	2	Part 4) Given $h_{4}(x) = f(g(x))$, find $h_{4}'(3)$		
4	3	2	1	-1			$h_4'(3) = \frac{1}{2}$

- \circ <u>Procedure:</u> Use appropriate rule to find h'(x) in terms of f, g, f', and g'. Plug in the given x value into your functions/derivatives. Use the table to find what these are.
- Use the product and quotient rules to find derivatives (possibly involving trigonometric functions)
 - <u>Procedure:</u> Specify F and G. Find F' and G'. Plug in these 4 bits into the appropriate formula. Simplify.
 - o p. 124: 1-12; 39-45

- Use the chain rule to find derivatives (possibly involving trigonometric functions)

- <u>Procedure</u>: Derivative of outside function (keeping inside as is), times the derivative of inside.
 p. 133: 7-16
- Use implicit differentiation to find dy/dx of a given function. Then, find the slope at a specified point.

<u>Procedure</u>: Use derivative as operator to both sides of function. Every term with x as only

- variable are done as usual.
- $\circ~$ Terms with a y in it require the chain rule, meaning dy/dx is multiplied to what the derivative of the y term gives you.
- $\circ~$ Use algebra to isolate and solve for dy/dx. Then plug in the (x,y) value of the point into this, and this is the slope of the curve.
- P. 142: 21-28

Find the equation of the tangent line of a function at a specified x-value.

- \circ <u>Procedure</u>: Plug in given x into given function, find y. This is your (x_1, y_1) .
- Find the derivative of the given function. Plug in the given x into this derivative. This value is your m.
- Plug in (x_1, y_1) and m into $y-y_1 = m(x-x_1)$
- P. 114: 53-56. (Note: these problems give you the y-value. Pretend you don't have it when working on them).

- Find the slope of the line tangent to the function at a specified x-value.

• <u>Procedure:</u> Very easy. Just take the derivative, and plug the given x-value into it. This is your answer.

f'(x)

f(x)

Rationalization

$$\int_{x^2} \frac{x-4}{(\sqrt{x+5}-3)} \cdot \frac{\sqrt{x+5}+3}{(\sqrt{x+5}+3)} \Rightarrow \frac{(\sqrt{x+4})(\sqrt{x+5}+3)}{(\sqrt{x+5}+3)} = \frac{(\sqrt{x+4})(\sqrt{x+5}+3)}{(\sqrt{x+5}+3)} \times \frac{1}{(\sqrt{x+5}+3)} \times$$

Make a function Continuous S.

$$P(k) = \begin{cases} 3x^{2}-2, x \leq 4 \\ 4xx - 2, x \geq 4 \end{cases}$$

$$Easy Method 2? Plug in 4 in both functions. only ply
it in fir k. "C" stays put. fet eganl and false.
$$3(t)^{2} - 2 = 4c4 - 2$$

$$3(t)^{2} - 2 = 4c4 - 2$$

$$3(t)^{2} - 2 = 16c - 2$$

$$46 = 16c - 2$$

$$46$$$$

CHAIN RULE $y = \sqrt{\cos(2x)}$ <u>Rewrite</u> y = (COS (2K))^{1/2} The after-party (Party of after-party) $\frac{dy}{dx} = \frac{1}{2} \left(\cos(2x) \right)^{1/2} - \sin(2x) \cdot 2$ chain $\frac{dy}{dx} = \frac{1}{2} \left(\cos(2x) \right)^{1/2} - 2\sin(2x)$ chain $\frac{dy}{dx} = \frac{1}{2} \left(\cos(2x) \right)^{1/2} - 2\sin(2x)$ $\frac{-\chi_{sin}(2x)}{2\sqrt{\cos(2x)}} = \frac{-\sin(2x)}{\sqrt{\cos(2x)}}$

Tangent live
Find the equation of the line tangent to

$$y = Sin(\partial x)$$
 at $x = TI/4$.
 $k = Y - y_1 = m/x - k_1$
Point $y = Sin(\partial \cdot T/4) = Sin(T) = 1$
 $(T/4, 1) (x_1, y)$
Slope
 $dy = 2Cos(dx)$
 $y - y_1 = m(x - k_1)$
 $y - 1 = o(x - T)$
 $dx = 2cos(2 \cdot T/4)$
 $y - 1 = o(x - T)$
 $dx = 2cos(2 \cdot T/4)$
 $y - 1 = 0$
 $y - 1 = 0$