1. If
$$y = (x^3 + 1)^2$$
, then $\frac{dy}{dx} =$

(A)
$$(3x^2)^2$$
 (B) $2(x^3+1)$ (C) $2(3x^2+1)$ (D) $3x^2(x^3+1)$ (E) $6x^2(x^3+1)$

$$2. \qquad \int_0^1 e^{-4x} dx =$$

- (A) $\frac{-e^{-4}}{4}$ (B) $-4e^{-4}$ (C) $e^{-4} 1$ (D) $\frac{1}{4} \frac{e^{-4}}{4}$ (E) $4 4e^{-4}$

3. For $x \ge 0$, the horizontal line y = 2 is an asymptote for the graph of the function f. Which of the following statements must be true?

(A)
$$f(0) = 2$$

- (B) $f(x) \neq 2$ for all $x \geq 0$
- (C) f(2) is undefined.
- (D) $\lim_{x\to 2} f(x) = \infty$
- (E) $\lim_{x \to \infty} f(x) = 2$

4. If $y = \frac{2x+3}{3x+2}$, then $\frac{dy}{dx} =$

(A)
$$\frac{12x+13}{(3x+2)^2}$$
 (B) $\frac{12x-13}{(3x+2)^2}$ (C) $\frac{5}{(3x+2)^2}$ (D) $\frac{-5}{(3x+2)^2}$

(B)
$$\frac{12x-13}{(3x+2)^2}$$

(C)
$$\frac{5}{(3x+2)^2}$$

(D)
$$\frac{-5}{(3x+2)^2}$$

(E)
$$\frac{2}{3}$$

$$\int_0^{\frac{\pi}{4}} \sin x \, dx =$$

(A)
$$-\frac{\sqrt{2}}{2}$$

(B)
$$\frac{\sqrt{2}}{2}$$

(C)
$$-\frac{\sqrt{2}}{2} - 1$$

(A)
$$-\frac{\sqrt{2}}{2}$$
 (B) $\frac{\sqrt{2}}{2}$ (C) $-\frac{\sqrt{2}}{2} - 1$ (D) $-\frac{\sqrt{2}}{2} + 1$ (E) $\frac{\sqrt{2}}{2} - 1$

(E)
$$\frac{\sqrt{2}}{2} - 1$$

6.
$$\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} =$$

- (A) 4 (B) 1 (C) $\frac{1}{4}$ (D) 0
- (E) −1

Part A

- 7. The graph of f', the derivative of the function f, is shown above. Which of the following statements is true about f?
 - (A) f is decreasing for $-1 \le x \le 1$.
 - (B) f is increasing for $-2 \le x \le 0$.
 - (C) f is increasing for $1 \le x \le 2$.
 - (D) f has a local minimum at x = 0.
 - (E) f is not differentiable at x = -1 and x = 1.

$$8. \qquad \int x^2 \cos(x^3) \, dx =$$

$$(A) -\frac{1}{3}\sin(x^3) + C$$

(B)
$$\frac{1}{3}\sin(x^3) + C$$

(C)
$$-\frac{x^3}{3}\sin(x^3) + C$$

(D)
$$\frac{x^3}{3}\sin(x^3) + C$$

(E)
$$\frac{x^3}{3}\sin\left(\frac{x^4}{4}\right) + C$$

- 9. If $f(x) = \ln(x + 4 + e^{-3x})$, then f'(0) is
 - (A) $-\frac{2}{5}$ (B) $\frac{1}{5}$ (C) $\frac{1}{4}$ (D) $\frac{2}{5}$

- (E) nonexistent

10. The function f has the property that f(x), f'(x), and f''(x) are negative for all real values x. Which of the following could be the graph of f?

(A)

(B)

(C)

(D)

(E)

- 11. Using the substitution u = 2x + 1, $\int_0^2 \sqrt{2x + 1} \, dx$ is equivalent to
 - (A) $\frac{1}{2} \int_{-1/2}^{1/2} \sqrt{u} \ du$ (B) $\frac{1}{2} \int_{0}^{2} \sqrt{u} \ du$ (C) $\frac{1}{2} \int_{1}^{5} \sqrt{u} \ du$ (D) $\int_{0}^{2} \sqrt{u} \ du$ (E) $\int_{1}^{5} \sqrt{u} \ du$

12. The rate of change of the volume, V, of water in a tank with respect to time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship?

(A)
$$V(t) = k\sqrt{t}$$

(B)
$$V(t) = k\sqrt{V}$$

(C)
$$\frac{dV}{dt} = k\sqrt{t}$$

(D)
$$\frac{dV}{dt} = \frac{k}{\sqrt{V}}$$

(E)
$$\frac{dV}{dt} = k\sqrt{V}$$

- 13. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
 - (A) a
- (B) b
- (C) c
- (D) d
- (E) e

14. If
$$y = x^2 \sin 2x$$
, then $\frac{dy}{dx} =$

- (A) $2x \cos 2x$
- (B) $4x \cos 2x$
- (C) $2x(\sin 2x + \cos 2x)$
- (D) $2x(\sin 2x x \cos 2x)$
- (E) $2x(\sin 2x + x \cos 2x)$

- 15. Let f be the function with derivative given by $f'(x) = x^2 \frac{2}{x}$. On which of the following intervals is f decreasing?
 - (A) $\left(-\infty, -1\right]$ only
 - (B) $(-\infty, 0)$
 - (C) [-1, 0) only
 - (D) $(0, \sqrt[3]{2}]$
 - (E) $[\sqrt[3]{2}, \infty)$

- 16. If the line tangent to the graph of the function f at the point (1, 7) passes through the point (-2, -2), then f'(1) is
 - (A) -5
- (B) 1
- (C) 3
- (D) 7
- (E) undefined

- 17. Let f be the function given by $f(x) = 2xe^x$. The graph of f is concave down when
 - (A) x < -2
- (B) x > -2 (C) x < -1 (D) x > -1
- (E) x < 0

х	-4	-3	-2	-1	0	1	2	3	4
g'(x)	2	3	0	-3	-2	-1	0	3	2

- 18. The derivative g' of a function g is continuous and has exactly two zeros. Selected values of g' are given in the table above. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals?
 - (A) $-2 \le x \le 2$ only
 - (B) $-1 \le x \le 1$ only
 - (C) $x \ge -2$
 - (D) $x \ge 2$ only
 - (E) $x \le -2$ or $x \ge 2$

- 19. A curve has slope 2x + 3 at each point (x, y) on the curve. Which of the following is an equation for this curve if it passes through the point (1, 2)?
 - (A) y = 5x 3
 - (B) $y = x^2 + 1$
 - (C) $y = x^2 + 3x$
 - (D) $y = x^2 + 3x 2$
 - (E) $y = 2x^2 + 3x 3$

$$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ 4x-7 & \text{if } x > 3 \end{cases}$$

- 20. Let f be the function given above. Which of the following statements are true about f?
 - I. $\lim_{x\to 3} f(x)$ exists.
 - II. f is continuous at x = 3.
 - III. f is differentiable at x = 3.
 - (A) None
 - (B) I only
 - (C) II only
 - (D) I and II only
 - (E) I, II, and III

- 21. The second derivative of the function f is given by $f''(x) = x(x-a)(x-b)^2$. The graph of f'' is shown above. For what values of x does the graph of f have a point of inflection?
 - (A) 0 and a only
- (B) 0 and m only
- (C) b and j only
- (D) 0, a, and b
- (E) b, j, and k

Part A

- 22. The graph of f', the derivative of f, is the line shown in the figure above. If f(0) = 5, then f(1) =
 - (A) 0
- (B) 3
- (C) 6
- (D) 8
- (E) 11

$$23. \qquad \frac{d}{dx} \left(\int_0^{x^2} \sin(t^3) \, dt \right) =$$

- (A) $-\cos(x^6)$ (B) $\sin(x^3)$ (C) $\sin(x^6)$ (D) $2x\sin(x^3)$ (E) $2x\sin(x^6)$

Part A

- 24. Let f be the function defined by $f(x) = 4x^3 5x + 3$. Which of the following is an equation of the line tangent to the graph of f at the point where x = -1?
 - (A) y = 7x 3
 - (B) y = 7x + 7
 - (C) y = 7x + 11
 - (D) y = -5x 1
 - (E) y = -5x 5

- 25. A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 21t^2 + 72t 53$. At what time t is the particle at rest?
 - (A) t = 1 only
 - (B) t = 3 only
 - (C) $t = \frac{7}{2}$ only
 - (D) t = 3 and $t = \frac{7}{2}$
 - (E) t = 3 and t = 4

- 26. What is the slope of the line tangent to the curve $3y^2 2x^2 = 6 2xy$ at the point (3, 2)?
 - (A) 0
- (B) $\frac{4}{9}$

- (C) $\frac{7}{9}$ (D) $\frac{6}{7}$ (E) $\frac{5}{3}$

- 27. Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?
 - $(A) \frac{1}{13}$
- (B) $\frac{1}{4}$ (C) $\frac{7}{4}$ (D) 4
- (E) 13

- 28. Let g be a twice-differentiable function with g'(x) > 0 and g''(x) > 0 for all real numbers x, such that g(4) = 12 and g(5) = 18. Of the following, which is a possible value for g(6)?
 - (A) 15
- (B) 18
- (C) 21
- (D) 24
- (E) 27

END OF PART A OF SECTION I