1. If $$y = (x^3 + 1)^2$$, then $\frac{dy}{dx} =$ (A) $$(3x^2)^2$$ (B) $2(x^3+1)$ (C) $2(3x^2+1)$ (D) $3x^2(x^3+1)$ (E) $6x^2(x^3+1)$ $$2. \qquad \int_0^1 e^{-4x} dx =$$ - (A) $\frac{-e^{-4}}{4}$ (B) $-4e^{-4}$ (C) $e^{-4} 1$ (D) $\frac{1}{4} \frac{e^{-4}}{4}$ (E) $4 4e^{-4}$ 3. For $x \ge 0$, the horizontal line y = 2 is an asymptote for the graph of the function f. Which of the following statements must be true? (A) $$f(0) = 2$$ - (B) $f(x) \neq 2$ for all $x \geq 0$ - (C) f(2) is undefined. - (D) $\lim_{x\to 2} f(x) = \infty$ - (E) $\lim_{x \to \infty} f(x) = 2$ 4. If $y = \frac{2x+3}{3x+2}$, then $\frac{dy}{dx} =$ (A) $$\frac{12x+13}{(3x+2)^2}$$ (B) $\frac{12x-13}{(3x+2)^2}$ (C) $\frac{5}{(3x+2)^2}$ (D) $\frac{-5}{(3x+2)^2}$ (B) $$\frac{12x-13}{(3x+2)^2}$$ (C) $$\frac{5}{(3x+2)^2}$$ (D) $$\frac{-5}{(3x+2)^2}$$ (E) $$\frac{2}{3}$$ $$\int_0^{\frac{\pi}{4}} \sin x \, dx =$$ (A) $$-\frac{\sqrt{2}}{2}$$ (B) $$\frac{\sqrt{2}}{2}$$ (C) $$-\frac{\sqrt{2}}{2} - 1$$ (A) $$-\frac{\sqrt{2}}{2}$$ (B) $\frac{\sqrt{2}}{2}$ (C) $-\frac{\sqrt{2}}{2} - 1$ (D) $-\frac{\sqrt{2}}{2} + 1$ (E) $\frac{\sqrt{2}}{2} - 1$ (E) $$\frac{\sqrt{2}}{2} - 1$$ 6. $$\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} =$$ - (A) 4 (B) 1 (C) $\frac{1}{4}$ (D) 0 - (E) −1 Part A - 7. The graph of f', the derivative of the function f, is shown above. Which of the following statements is true about f? - (A) f is decreasing for $-1 \le x \le 1$. - (B) f is increasing for $-2 \le x \le 0$. - (C) f is increasing for $1 \le x \le 2$. - (D) f has a local minimum at x = 0. - (E) f is not differentiable at x = -1 and x = 1. $$8. \qquad \int x^2 \cos(x^3) \, dx =$$ $$(A) -\frac{1}{3}\sin(x^3) + C$$ (B) $$\frac{1}{3}\sin(x^3) + C$$ (C) $$-\frac{x^3}{3}\sin(x^3) + C$$ (D) $$\frac{x^3}{3}\sin(x^3) + C$$ (E) $$\frac{x^3}{3}\sin\left(\frac{x^4}{4}\right) + C$$ - 9. If $f(x) = \ln(x + 4 + e^{-3x})$, then f'(0) is - (A) $-\frac{2}{5}$ (B) $\frac{1}{5}$ (C) $\frac{1}{4}$ (D) $\frac{2}{5}$ - (E) nonexistent 10. The function f has the property that f(x), f'(x), and f''(x) are negative for all real values x. Which of the following could be the graph of f? (A) (B) (C) (D) (E) - 11. Using the substitution u = 2x + 1, $\int_0^2 \sqrt{2x + 1} \, dx$ is equivalent to - (A) $\frac{1}{2} \int_{-1/2}^{1/2} \sqrt{u} \ du$ (B) $\frac{1}{2} \int_{0}^{2} \sqrt{u} \ du$ (C) $\frac{1}{2} \int_{1}^{5} \sqrt{u} \ du$ (D) $\int_{0}^{2} \sqrt{u} \ du$ (E) $\int_{1}^{5} \sqrt{u} \ du$ 12. The rate of change of the volume, V, of water in a tank with respect to time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship? (A) $$V(t) = k\sqrt{t}$$ (B) $$V(t) = k\sqrt{V}$$ (C) $$\frac{dV}{dt} = k\sqrt{t}$$ (D) $$\frac{dV}{dt} = \frac{k}{\sqrt{V}}$$ (E) $$\frac{dV}{dt} = k\sqrt{V}$$ - 13. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable? - (A) a - (B) b - (C) c - (D) d - (E) e 14. If $$y = x^2 \sin 2x$$, then $\frac{dy}{dx} =$ - (A) $2x \cos 2x$ - (B) $4x \cos 2x$ - (C) $2x(\sin 2x + \cos 2x)$ - (D) $2x(\sin 2x x \cos 2x)$ - (E) $2x(\sin 2x + x \cos 2x)$ - 15. Let f be the function with derivative given by $f'(x) = x^2 \frac{2}{x}$. On which of the following intervals is f decreasing? - (A) $\left(-\infty, -1\right]$ only - (B) $(-\infty, 0)$ - (C) [-1, 0) only - (D) $(0, \sqrt[3]{2}]$ - (E) $[\sqrt[3]{2}, \infty)$ - 16. If the line tangent to the graph of the function f at the point (1, 7) passes through the point (-2, -2), then f'(1) is - (A) -5 - (B) 1 - (C) 3 - (D) 7 - (E) undefined - 17. Let f be the function given by $f(x) = 2xe^x$. The graph of f is concave down when - (A) x < -2 - (B) x > -2 (C) x < -1 (D) x > -1 - (E) x < 0 | х | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | |-------|----|----|----|----|----|----|---|---|---| | g'(x) | 2 | 3 | 0 | -3 | -2 | -1 | 0 | 3 | 2 | - 18. The derivative g' of a function g is continuous and has exactly two zeros. Selected values of g' are given in the table above. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals? - (A) $-2 \le x \le 2$ only - (B) $-1 \le x \le 1$ only - (C) $x \ge -2$ - (D) $x \ge 2$ only - (E) $x \le -2$ or $x \ge 2$ - 19. A curve has slope 2x + 3 at each point (x, y) on the curve. Which of the following is an equation for this curve if it passes through the point (1, 2)? - (A) y = 5x 3 - (B) $y = x^2 + 1$ - (C) $y = x^2 + 3x$ - (D) $y = x^2 + 3x 2$ - (E) $y = 2x^2 + 3x 3$ $$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ 4x-7 & \text{if } x > 3 \end{cases}$$ - 20. Let f be the function given above. Which of the following statements are true about f? - I. $\lim_{x\to 3} f(x)$ exists. - II. f is continuous at x = 3. - III. f is differentiable at x = 3. - (A) None - (B) I only - (C) II only - (D) I and II only - (E) I, II, and III - 21. The second derivative of the function f is given by $f''(x) = x(x-a)(x-b)^2$. The graph of f'' is shown above. For what values of x does the graph of f have a point of inflection? - (A) 0 and a only - (B) 0 and m only - (C) b and j only - (D) 0, a, and b - (E) b, j, and k Part A - 22. The graph of f', the derivative of f, is the line shown in the figure above. If f(0) = 5, then f(1) = - (A) 0 - (B) 3 - (C) 6 - (D) 8 - (E) 11 $$23. \qquad \frac{d}{dx} \left(\int_0^{x^2} \sin(t^3) \, dt \right) =$$ - (A) $-\cos(x^6)$ (B) $\sin(x^3)$ (C) $\sin(x^6)$ (D) $2x\sin(x^3)$ (E) $2x\sin(x^6)$ ## Part A - 24. Let f be the function defined by $f(x) = 4x^3 5x + 3$. Which of the following is an equation of the line tangent to the graph of f at the point where x = -1? - (A) y = 7x 3 - (B) y = 7x + 7 - (C) y = 7x + 11 - (D) y = -5x 1 - (E) y = -5x 5 - 25. A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 21t^2 + 72t 53$. At what time t is the particle at rest? - (A) t = 1 only - (B) t = 3 only - (C) $t = \frac{7}{2}$ only - (D) t = 3 and $t = \frac{7}{2}$ - (E) t = 3 and t = 4 - 26. What is the slope of the line tangent to the curve $3y^2 2x^2 = 6 2xy$ at the point (3, 2)? - (A) 0 - (B) $\frac{4}{9}$ - (C) $\frac{7}{9}$ (D) $\frac{6}{7}$ (E) $\frac{5}{3}$ - 27. Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)? - $(A) \frac{1}{13}$ - (B) $\frac{1}{4}$ (C) $\frac{7}{4}$ (D) 4 - (E) 13 - 28. Let g be a twice-differentiable function with g'(x) > 0 and g''(x) > 0 for all real numbers x, such that g(4) = 12 and g(5) = 18. Of the following, which is a possible value for g(6)? - (A) 15 - (B) 18 - (C) 21 - (D) 24 - (E) 27 **END OF PART A OF SECTION I**