Graphs aren't shown here because you can just graph w/ a calculator or Desmos.com
36. infinite discontinuity at $\mathrm{x}=6 . \lim _{x \rightarrow 6+} f(x)=\infty$
39. infinite discontinuities at $\mathrm{x}=2$ and $\mathrm{x}=-2$. $\lim _{x \rightarrow 2+} f(x)=-\infty$ and $\lim _{x \rightarrow-2-} f(x)=-\infty$
42. continuous everywhere
45. continuous everywhere
48. removable discontinuity at $x=-2$. $\lim _{x \rightarrow-2} \frac{1}{x-3}=-\frac{1}{5} \quad$ infinite discontinuity at $x=3 . \lim _{x \rightarrow 3+} \frac{1}{x-3}=\infty$
51. continuous everywhere. Check at $\mathrm{x}=1$ using definition of continuity:

1. $f(1)=1$
2. $\left.\begin{array}{rl}\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow+^{-}} x=1 \\ \lim _{x \rightarrow+^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} x^{2}=1\end{array}\right\} \lim _{x \rightarrow 1^{-1}} f(x)=1$
3. $f(-1)=\lim _{x \rightarrow 1} f(x)$
4. jump discontinuity at $x=2$
5. $f(2)=-2(2)=-4$
6. $\left.\begin{array}{rl}\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}(-2 x)=-4 \\ \lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}}\left(x^{2}-4 x+1\right)=-3\end{array}\right\} \lim _{x \rightarrow 2} f(x)$ does not exist.
7. rewrite as $\frac{1}{\sin (2 x)} \cdot \sin (2 \mathrm{x})=0$ at multiples of $\frac{\pi}{2}$. Infinite discontinuities there
8. jump discontinuities at every integer (don't worry if you don't get this, I didn't realize it was part of this set. Step functions aren't a major focus of this class.]
