

HW

- 31. not continuous @ x=2, so not diff over (0,6)
- 32. not diff. @ x=2, so not diff over (0,6)
- 33. f is not cont @ x=3 (inf. disc.) so f is not diff on (0,6)
- 34. f is not diff @ x=3 (corner) so f is not diff on (0,6)

$$b c = 1/2$$

C.
$$y - \frac{19}{4} = -\left(x - \frac{1}{2}\right)$$

$$36$$
 a y-0=1(x-4)

$$b c=1$$

c.
$$y+12=1(x-1)$$

$$37. c = -1/2$$

39. c=
$$\pm \frac{1}{\sqrt{3}}$$

40.
$$c = \sqrt[3]{2}$$

How to find where a function has relative extrema

- 1. Take the derivative of y, y'
- 2. Find C.N. Set y' equal to zero, solve; consider where it is undefined.
- 3. Plot C.N. on number line, do bunnyhops for signage
- 4. A sign change must occur for a max or min.

$$f(x) = 3x^{2}$$

$$f'(x) = 6x = 0$$

$$\frac{X=0}{C \cdot N}$$

f has a rel min @ X=0 b/c f'changerfrom - to+. Find the x-coordinate(s) where $y=x^4-4x^2+1$ has relative extrema. Justify your classifications.

Take deriving year diagonisations.

Take deriving
$$y' = 4x^3 - 8x$$

The continuous equation of the properties of the pr

This sign chart tells you 2 things:

- locations of extrema
- intervals of increase/decrease

A sign chart is not sufficient for getting credit on assessment/AP test

Must explain verbally!

"F has a relative maximum at x=0 BECAUSE F' changes sign from positive to negative"

Find the x-coordinate(s) where $y = x^3-2x^2-1$ has relative extrema. Justify your classifications.

f has a rel max @ x=0 because f 'changes from positive to negative f has a rel min @ x=4/3 because f' changes from negative to pos

Share with your face/elbow partner something you've learned so far today

Absolute (Global) Extrema

Absolute Extremes occur on intervals

They occur at relative ext. OR at endpoints!

The Extreme Value Theorem (EVT)

If F is continuous on [a,b], then F has both a max and min on [a,b].

f(c) is a max if for all x in [a,b], $f(x) \le f(c)$

f(c) is a min if for all x in [a,b], $f(x) \ge f(c)$

Whiteboards:

- alternate who has board/pen with partner
- make sure you agree on what's being drawn
- discuss/work out disagreements verbally/visually

f(1) is an absolute max but not a relative maximum, and the absolute minimum is also a relative min

f(3) is an relative max but not an absolute max and f(5) is an absolute max

neither f(1) nor f(5) is an absolute/relative max or min

Sketch a continuous function on [1, 5] where

no ne kes/valleys
f has no relative max/min but has absolute max/min

the absolute max is a relative max, but the absolute min is not a relative min

Bonus Content!

Due Monday:

p. 183 #13-39 (mult of 3) ignore book instructions, just find/classify/justify rel ext and find/justify intervals of increase/decrease

Due Wednesday p. 167 # 17-27 (odd), 52