Given below is the graph of f^{\prime} the first derivative of f. Use it to answer \#1 and 2.

1. Over what interval(s) is f decreasing? Explain in detail.
2. Where, if anywhere, does f achieve a relative minimum? Justify your response.

D-AD8

3. Find the absolute extrema of $f(x)=2 x^{3}-6 x-2$ over the interval $[-4,0]$.
4. Find and classify all relative maxima and relative minima of $f(x)=-x^{3}+3 x^{2}+2$. Justify your classifications.

D-AD9
5. For what interval(s) is the function $f(x)=x^{3}+3 x^{2}-9 x+7$ increasing? Justify your answer.

D-CD8

6. Find the value of c guaranteed to exist by the Mean Value Theorem for $f(x)=x^{3}-2 x^{2}$ over $[0,2]$.
7. Find the value of c guaranteed to exist by the Mean Value Theorem for $f(x)=\sqrt{x}$ over $[0,4]$

D-AD18
8. Use a tangent line to approximate $\sqrt[3]{122}$

D-AD0
D-AD5 (use a separate sheet!)
9. $\lim _{t \rightarrow \infty} \frac{3 t^{2}}{3^{t}}$
11. Find $\left.\frac{d y}{d x}\right|_{(1,2)}$ for $x y^{2}+2 x y=8$
10. $\lim _{x \rightarrow 3} \frac{\sin (\pi x)}{x^{2}-9}$

