Good afternoon and welcome back
Assessments are being passed back
We'll be using peer experts on 2 problems:

#9: Zack

#11: Grayson

9. Find the values of a and b that would make
$$f(x)$$
 differentiable.
$$f(x) = \begin{cases} ax^2 + bx - 3 & x < 1 \\ -x^2 + 3x + 6 & x \ge 1 \end{cases}$$

$$-a = 10$$
 $a = -10$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

$$\frac{1}{4x} (xy^{2} - 3x + 2x) = (4) \frac{1}{3x} \qquad f(x) = 3$$

11. Find the x-values of any horizontal and vertical tangents to
$$f(x) = (x^2 - 1)^{\frac{1}{3}}$$

$$\frac{1}{\chi^n} \stackrel{=}{=} \chi^{-n}$$

$$\frac{1}{3(x^2-1)^{\frac{3}{3}}} \cdot 2x = \frac{2x}{3(x^2-1)^{\frac{3}{3}}} \times = 1 \text{ or } -1$$

$$\frac{\text{f}.\text{f}.}{2 \times = 0} \qquad \frac{\text{0.7}.}{3 \left(\times^2 - 1 \right)^{2/3} = 0}$$

Need to reassess? Be sure to have hw's finished

Need to assess first time?

- Tutoring tomorrow 4-5p
- DS Thursday+Friday

Mean Value Theorem

If f(x) is continuous on [a,b] and differentiable on (a,b), then there exists some c in (a,b) such that

Attach to your notes

Continuity is a requirement for the IVT to apply

Differentiability is a requirement for the MVT to apply

Why is differentiability needed? Why is continuity not enough

continuous, mvt seems to work

not continuous, mvt obviously fails

All 4 are continuous, but only III and IV are differentiable see how MVT fails for I and II?

Have we seen this before??

2nd warm up:)

Your car enters a toll highway at 1pm. The highway stretches for 120 miles and has a speed limit of 55mph. You come to the toll booth at the end of the highway at 3pm and are handed a speeding ticket.

Why? Explain your reasoning.

August 14, 2017

Find the value(s) of c guaranteed to exist by the MVT

for $f(x)=x^2-6x+8$ on [2,5]

② Find the aug. rate of charge
$$\frac{f(b) - f(a)}{b - a} = \frac{f(5) - f(2)}{5 - 2} = \frac{3 - 0}{3}$$

$$f'(x) = 2x - 6$$

$$9 \text{ Set } f'(x) = avg. \text{ rate}$$

$$2x - 6 = 1$$

$$2x=7 \Rightarrow x=3.5$$

HW p. 174 #31-40

due Friday 12/1